
This table attempts to cover the semantics of each element (class, attribute and property) in the CAMEL meta-model.
Apart from this, it also supplies the concrete syntax of each element by using a particular symbolism. This symbolism is
explained at the end of this document. A more detailed inspection of the concrete syntax of CAMEL can be performed

over the CamelDsl.xtext file in the eu.paasage.camel.dsl directory of the CAMEL distribution. For a more
structured inspection of the language semantics, the CAMEL meta-model definition itself can be found at the camel.ecore

file in the eu.paasage.camel.dsl directory of the CAMEL distribution.

Table 1. The CAMEL language semantics

Class Name Attribute / Property

Name

Concrete Syntax Element Semantics

CAMEL Meta-Model

Model An abstract class representing any kind of
model

name The name of the model

importURI The URI of a model to import. This attribute
has been introduced due to a technical
requirement of the concrete textual editor of
CAMEL.

CamelModel camel model name {

 inner def ...
}

A concrete subclass of Model. It represents
the overall CAMEL model acting as a
container for all the other kinds of models
that can be specified.

actions (action def ...)* Containment reference to a set of actions

applications (application def ...)* Containment reference to a set of
applications modelled by the user

deploymentModels (deployment model def ...)* Containment reference to all deployment
models defined in this CAMEL model

executionModels (execution model def ...)* Containment reference to all execution
models defined in this CAMEL model

locationModels (location model def ...)* Containment reference to all location models
defined in this CAMEL model

metricModels (metric model def ...)* Containment reference to all metric models
defined in this CAMEL model

organisationModels (organisation model def ...)* Containment reference to all organisation
models defined in this CAMEL model

providerModels (provider model def ...)* Containment reference to all provider
models defined in this CAMEL model

requirementModels (requirement model def ...)* Containment reference to all requirement
models defined in this CAMEL model

scalabilityModels (scalability model def ...)* Containment reference to all scalability
models defined in this CAMEL model

securityModels (security model def ...)* Containment reference to all security models
defined in this CAMEL model

typeModels (type model def ...)* Containment reference to all type models
defined in this CAMEL model

unitModels (unit model def ...)* Containment reference to all unit models
defined in this CAMEL model

Action action name {

 inner def ...
}

A class representing any action that can be
defined by the user. Actions can be used for
the modelling of scalability rules but also in
order to define access control policies in
organisation models.

name The name of the action

type type: ActionType The type of the action taking values from the
ActionType enumeration

ActionType EVENT CREATION or SCALE DOWN or
SCALE IN or SCALE OUT or SCALE UP

An enumeration listing all possible concrete
actions that can be defined by the user.
Current content mainly reflects scaling and
access control actions.

Application application name {

 inner def ...

}

A class representing an application of the
user. A CAMEL model can include the
specification of multiple applications for the
same user.

name The name of the application that should be
unique.

version version: 'string' The version of the application. This along
with the name attribute constitute a unique
identifier that characterises the current state
of an application. In principle, in the same
CAMEL model, the same application can be
associated to different versions. This is
modelled by specifying as many Application
instances as the number of the application
versions. In this kind of modelling, then other
CAMEL models can reference exactly the
version of the application that they concern.
For instance, a deployment model can refer
to a specific version of an application which
might also include even different
components from a previous version of that
application.

description description: 'string' A textual description of the application which
could cover, e.g., its overall functionality and
goals.

owner owner: entityRef A reference to the owner of the application
that can be an Entity. Entities can be either
organisations or users (defined in an
organisation model).

deploymentModels deploymentModels: [

depModelRef(,depModelRef)
*]

A reference to a set of deployment models
that have been defined for the application
(and its corresponding version).

LayerType BPM or SCC or SaaS or PaaS or IaaS An enumeration that list the layers on which
an application can reside. Such a list can be
used to associate specific CAMEL elements to
a certain level. For example, a metric can be

mapped to a certain layer, e.g., IaaS, to
denote that is used to measure application
objects/components (in the overall
application dependency hierarchy) at that
layer. The list includes the typical cloud layers
as well as higher-level ones mapping to
service compositions and business processes.

Deployment Meta-Model

DeploymentElement An abstract class representing any
deployment element in the deployment
meta-model.

name The name of the deployment element

DeploymentModel deployment model name {

 inner def ...
}

A concrete subclass of Model. It represents
the model of the application deployment
acting as a container of different deployment
elements

internalComponents (internal component def ...)* A containment reference to all
InternalComponents defined in this model

internalComponentInstances (internal component instance

def ...)*

A containment reference to all
InternalComponentInstances defined in this
model

vms (vm def ...)* A containment reference to all VMs defined
in this model

vmInstances (vm instance def ...)* A containment reference to all VMInstancess
defined in this model

communications (communication def ...)* A containment reference to all
Communications defined in this model

communicationInstances (communication instance def

...)*

A containment reference to all
CommunicationInstances defined in this
model

hostings (hosting def ...)* A containment reference to all Hostings
defined in this model

hostingInstances (hosting instance def ...)* A containment reference to all
HostingInstances defined in this model

vmRequirementSets (vm requirement set def

...)*

A containment reference to all
VMRequirementSets defined in this model

globalVMRequirementSet global

vmRequirementSetRef

A reference to a global VMRequirement set,
i.e., a set of requirements that holds for all
VMs defined in this model. This set should be
included in the vmRequirementSets
containment reference list.

Component A class that represents any component,
either internal or external to the user
application. Internal components are usually
normal application components while
external components are usually VMs.

providedCommunications (provided communication A containment reference to all

port def ...)* communication ports provided by this
component.

providedHosts (provided host port def ...)* A containment reference to all hosting ports
provided by this component.

configurations (configuration def ...)* A containment reference to all configurations
that can be applied for that component to
handle its lifecycle management.

InternalComponent internal component name {

 inner def ...
}

This class represents an internal component
of a user application. Such a component
usually maps to a software artefact that has
to be downloaded, installed and executed as
well as deployed in a certain VM. To this end,
to assist in its lifecycle management, a
configuration can be defined for that
component (inherited from the
configurations containment reference from
the Component parent class).

compositeInternalComponent

s
 A containment reference to composing

internal components for this internal
component. This can enable to define a
hierarchy of internal application components.

requiredCommunications (required communication

port def ...)*

A containment reference to required
communication ports expressing an actual
requirement to communicate with other
components via these ports.

requiredHost (required host port def ...)* A containment reference to a required
hosting port expressing a requirement for
being hosted via this port by another
component (e.g., servlet container or VM).

VM vm name {

 inner def ...
}

A class representing a VM as a container of
user (deployment) requirements. A mapping
of an internal component to a VM via a
Hosting indicates that the component is
coupled with such deployment requirements.
Such requirements can then be exploited to
discover the actual VM offering to be
instantiated to host this internal component.

vmRequirementSet requirement set

vmRequirementSetRef

A reference to a VMRequirementSet, i.e., a
set of VM requirements spanning
quantitative or qualitative hardware, OS or
image, location and provider requirements.
This reference might not be provided,
depending on whether the reference to a
global VM requirement set has been given
for the deployment model containing this
VM. Such global VM requirement set can be
complete enough such that there is no need
to specify an additional VM requirement set
at the local level of a VM. Global and local
VM requirement sets can play a
complementary role: i.e., global sets can

define (partial) global requirements that
should hold for all VMs defined in the current
deployment model while local sets define
(partial) requirements specific to a certain
VM, where partial means that not all kinds of
requirements are specified in such sets.
When a global and a local VM requirement
set is overlapping (i.e., there is at least one
common kind of requirement being specified
in them), then the semantics should be that
the local VM requirement set takes priority
over the global one. However, such a
modelling should be avoided as it can
potentially lead to logical errors.

VMRequirementSet requirement set name {

 inner def ...
}

This class represents a set of VM
requirements of different kinds, including
quantitative/qualitative hardware, OS/Image,
location and provider requirements. At least
one kind of requirements should be specified
for this set; otherwise, it is not meaningful to
model it.

locationRequirement location:

locationRequirementRef
A reference to a location requirement that is
specified in a certain requirement model of
the overall CAMEL model. Via this
requirement, we can restrain the placement
of a VM (local scope) or sets of VMs (global
scope) to a one or more geographical or
cloud-specific locations.

providerRequirement A reference to a provider requirement that is
specified in a certain requirement model of
the overall CAMEL model. Via this
requirement, we can restrain the placement
of a VM (local scope) or sets of VMs (global
scope) to occur only in the cloud(s) of one or
more specific cloud providers.

qualitativeHardwareRequirem

ent

qualitative hardware:

qualitativeHardwareRequirem

entRef

A reference to a qualitative hardware
requirement that is specified in a certain
requirement model of the overall CAMEL
model. Via this requirement, we can restrain
a VM (local scope) or sets of VMs (global
scope) to be instantiated only based on VM
offerings that match this requirement.

quantitativeHardwareRequire

ment

quantitative hardware:

quantitativeHardwareRequire

mentRef

A reference to a quantitative hardware
requirement that is specified in a certain
requirement model of the overall CAMEL
model. Via this requirement, we can restrain
a VM (local scope) or sets of VMs (global
scope) to be instantiated only based on VM
offerings that match this requirement.

osOrImageRequirement os: osRequirementRef or
image:

imageRequirementRef

A reference to an OS or Image requirement
that is specified in a certain requirement
model of the overall CAMEL model. Via this

requirement, we can restrain a VM (local
scope) or sets of VMs (global scope) to have a
specific OS or be instantiated based on a
particular image. Such a requirement can
also be used to filter the VM offering /
provider space based on the OS and/or
images that can be supported by the cloud
providers modelled.

Configuration configuration name {

 inner def ...
}

This class represents a configuration
element, i.e., a container of configuration
information that can be used to handle the
lifecycle of an application (internal)
component. Currently, each lifecycle activity
covered maps to a certain OS-specific
command that has to be executed in order to
realise this activity. This means that, for
instance, the download of the binaries (or
source code) of an application component
can be supported via the execution of a
downloadCommand). Please note that
depending on the particular situation, not all
different commands kinds need to be
provided. For instance, a database
component could start running immediately
after its installation, such that a
startCommand does not need to be provided
for it.

downloadCommand download: 'string' An OS-specific command, represented as a
String, that can be executed to download the
code (binaries or source code) of an internal
component.

uploadCommand upload: 'string' An OS-specific command, represented as a
String, that can be executed to upload the
code (binaries or source code) of an internal
component.

installCommand install: 'string' An OS-specific command, represented as a
String, that can be executed to install an
internal component in a corresponding VM.

configureCommand configure: 'string' An OS-specific command, represented as a
String, that can be executed to configure the
internal component before
executing/starting it.

startCommand start: 'string' An OS-specific command, represented as a
String, that can be executed to initiate the
running of an internal component.

stopCommand stop: 'string' An OS-specific command, represented as a
String, that can be executed to stop an
internal component from executing.

Communication communication name {

 inner def ...
}

A class representing a communication
between two internal components. The
communication is established by connecting

the provided and required communication
ports of the components to be connected.
The provided and required communication
ports can also be configured to better
support the establishment & management of
the respective communication by associating
them to a certain Configuration.

type type: CommunicationType

An attribute that characterises the type of
the communication taking values from the
CommunicationType enumeration. If the type
is LOCAL, then the two components should
be placed in the same VM. If the type is
REMOTE, then the two component should
always be placed in a different VM. Finally, if
the type is ANY, then there is flexibility in the
placement of the communicating
components as both placement/deployment
options are possible (mapping to the
previous two communication type values).

providedCommunication to providedCommunication

PortRef

A reference to the provided communication
port of one component from the
communicating components pair.

requiredCommunication from

requiredCommunicationPortR

ef

A reference to the required communication
port of one component from the
communicating components pair.

providedPortConfiguration provided port configuration

def ...

A containment reference to a Configuration
of the provided communication port to
support the lifecycle management of the
communication.

requiredPortConfiguration required port configuration

def ...

A containment reference to a Configuration
of the required communication port to
support the lifecycle management of the
communication.

CommunicationType ANY or LOCAL or REMOTE An enumeration which specifies the kind of
communication that can be established
between two internal components. The
semantics of the enumeration members have
been explained in the type attribute of the
Communication class.

CommunicationPort A class representing the port of a
communication. A port can be either
provided or required for a certain
component.

 portNumber port: 'integer' The number of the port as an integer
attribute

ProvidedCommunicati

on

 provided communication

name {

 inner def ...
}

A sub-class of CommunicationPort which
represents a provided communication port.

RequiredCommunicati required communication A sub-class of CommunicationPort which

on name {

 inner def ...
}

represents a required communication port.

Hosting hosting name {

 inner def ...
}

A class that represents the hosting of one
internal component by another component
which can be either internal (e.g., servlet
container) or a VM. A hosting is established
by connecting the provided hosting port of
the latter component with the required
hosting port of the former component (i.e.,
the internal one).

providedHost to providedHostPortRef A reference to the provided host of the
hosting component.

requiredHost from requiredHostPortRef A reference to the required host of the
internal component to be hosted.

providedHostConfiguration A containment reference to the
Configuration of the provided host to support
the lifecycle management of the Hosting.

requiredHostConfiguration A containment reference to the
Configuration of the required host to support
the lifecycle management of the Hosting.

HostingPort A class that represents a hosting port. Such a
port can be required or provided by a certain
component. In contrast to the
CommunicationPort, this class does not need
to be associated with a port number as
hosting ports can be considered as virtual
(thus not mapping to real ports).

ProvidedHost provided host name

A sub-class of HostingPort which denotes a
hosting port provided by a component.

RequiredHost required host name

A sub-class of HostingPort which denotes a
hosting port required by an internal
component.

ComponentInstance

This class represents an instance of a
component (by following the type-instance
pattern based on the models@runtime
approach). Such an instance signifies a real
instance of a component and not an abstract
specification of such a component (which is
represented by the instance type, i.e., the
component itself).

type

A reference to the type of the component
instance, i.e., a certain Component.

providedCommunicationInsta

nces
(provided communication

port instance def ...)*

A containment reference to all provided
communication port instances of this
component instance.

providedHostInstances (provided host port instance

def ...)*

A containment reference to all provided
hosting port instances of this component
instance.

instantiatedOn A date attribute which explicates when the
component has been instantiated.

destroyedOn A date attribute when the component
instance has been destroyed.

InternalComponentIn

stance

 internal component

instance name typed

internalComponentRef {

 inner def ...
}

This class represents an instance of an
internal component. Similarly to the case of
an internal component, this instance is
associated to instances of required
communication and hosting ports of its type.

requiredCommunicationInsta

nces
(required communication

port instance def ...)*

A containment reference to the instances of
required communication ports of this
internal component instance.

requiredHostingInstances (required host port instance

def ...)*

A containment reference to the instances of
required hosting ports of this internal
component instance.

VMInstance vminstance name typed

vmRef {

 inner def ...
}

An instance of a particular VM. This instance
is associated via its properties to a particular
VM flavour of the provider model of the
selected cloud provider. This means that this
element is a real instance of this VM flavour
deployed in the cloud of the selected cloud
provider.

vmType vm type: featureRef A reference to an Attribute of the VM
Feature of the selected cloud provider's
model which represents a VM flavour/type
characteristic (i.e., a certain provider-specific
classification of the different kinds of VMs
offered).

vmTypeValue vm type value: attributeRef A reference to the value of the VM flavour
attribute which corresponds to the concrete
VM flavour/offering, supplied by the selected
cloud provider, which has been instantiated.

ip ip: 'string' This attribute represents the IP of the VM
instance that has been generated.

CommunicationInstan

ce

 connect

requiredCommunicationPortI

nstanceRef to

providedCommunicationPortI

nstanceRef typed

communicationRef

This class represents an instance of a
communication between two components,
i.e., the actual communication between two
instances of these components.

type A reference to the type of this
communication instance, i.e., the actual
Communication.

providedCommunicationInsta

nce
 A reference to the communication port

instance provided by one component
instance in the communicating component
instance pair of this communication instance.

requiredCommunicationInsta

nce
 A reference to the communication port

instance required by one component

instance in the communicating component
instance pair of this communication instance.

CommunicationPortIn

stance

 A class that represents an instance of a
CommunicationPort.

 type A reference to the type of the
communication port instance, i.e., the actual
CommunicationPort that is instantiated.

ProvidedCommunicati

onInstance

 provided communication

instance name typed

providedCommunicationPortR

ef

A sub-class of CommunicationPortInstance
representing an instance of a provided
communication port.

RequiredCommunicati

onInstance

 required communication

instance name typed

requiredCommunicationPortR

ef

A sub-class of CommunicationPortInstance
representing an instance of a required
communication port.

HostingInstance host

requiredHostPortInstanceRef
on

providedHostPortInstanceRef

typed hostingRef

A class that represents an instance of a
Hosting between two components.

type A reference to the type of the hosting
instance, i.e., the actual Hosting instantiated.

providedHostingInstance A reference to the instance of the provided
hosting port of this communication instance.

requiredHostingInstance A reference to the instance of the required
hosting port of this communication instance.

HostingPortInstance A class that represents an instance of a
HostingPort.

 type A reference to the type of this hosting port
instance, i.e., the actual HostingPort
instantiated.

ProvidedHostingInst

ance

 provided host instance

name typed

providedHostPortRef

A sub-class of HostingPortInstance that
represents an instance of a provided hosting
port.

RequiredHostingInst

ance

 required host instance

name typed

requiredHostPortRef

A sub-class of HostingPortInstance that
represents an instance of a required hosting
port.

Requirement Meta-Model

RequirementModel requirement model name {

 inner def ...
}

A concrete subclass of Model that represents
a requirement model, i.e., a container of
different kinds of requirements. The logical
combination of requirements is handled by
another element, the RequirementGroup
which enables to form hierarchies of
requirements partitions.

 requirements (requirement def ...)* A containment reference to all requirements
that have been specified in this model.

Requirement An abstract class that represents any kind of

requirement.

 name An attribute that represents the name of the
requirement.

RequirementGroup group name {

 inner def ...
}

This class represents a logical group of
requirements on which a particular logical
operator can be applied. As this class is a sub-
class of Requirement, this means that a
requirement group can contain requirement
sub-groups thus enabling to capture whole
requirement group hierarchies/trees.

requirements requirements [

requirementRef(,requiremen

tRef)*]

A reference to the requirements being
grouped.

application application [

applicationRef(,applicationRe

f)*]

A reference to the applications on which the
requirement group applies. This does not
mean that each requirement can apply to all
applications. On the contrary, the reference
can be considered as a collection point for all
the applications that are associated with the
requirements of a certain group.

requirementOperator operator:

RequirementOperatorType

An attribute that points to the logical
operator that is used for the grouping of the
requirements. This attribute has as its
domain a corresponding enumeration called
RequirementOperatorType.

RequirementOperator

Type

 AND or OR or XOR An enumeration that represents a list of all
logical operators that can be used for the
logical grouping of requirements (into
requirement groups).

HardRequirement An abstract sub-class of Requirement which
represents a hard requirement, i.e., a
requirement that needs to be guaranteed by
the platform at all costs.

SoftRequirement An abstract sub-class of Requirement which
represents a soft requirement, i.e., a
requirement that the platform should
attempt to satisfy in a best-effort basis.

priority priority: double An attribute of type double which represents
the priority or preference over a specific soft
requirement. This enables to support a
prioritisation of soft requirements which can
enable some kind of flexibility in the platform
towards the satisfaction of this kind of
requirements. This maps to the policy that
the higher is the priority of a soft
requirement, the higher will be its
satisfaction degree.

ServiceLevelObjecti

ve

 slo name {

 inner def ...
}

This is a sub-class of a hard requirement
which represents a Service Level Objective
(SLO), i.e., a non-functional requirement.

Such a requirement is expressed via a
condition over a non-functional property
(e.g., cost) or metric (e.g., mean response
time).

customServiceLevel service level:

conditionRef
The condition of the SLO which can be either
a MetricCondition or a PropertyCondition.

OptimisationRequire

ment

 optimisation requirement

name {

 inner def ...
}

This is the sole sub-class of SoftRequirement
which represents an optimisation
requirement, i.e., a requirement to either
minimise or maximise the value of a certain
non-functional property or metric. Apart
from the element to be optimised, this
requirement should be associated to the
context of that element for application
measurability / monitoring reasons.

optimisationFunction function:

OptimisationFunctionType
This attribute represents the optimisation
function of the optimisation requirement
which is captured by the
OptimisationFunctionType enumeration.
Obviously, such a function can take only two
possible values, i.e., MINIMISE or MAXIMISE,
reflecting the actual content of the
aforementioned enumeration.

metric metric: metricRef A reference to the metric whose values need
to be optimised.

property property: propertyRef A reference to the (non-functional) property
whose values need to be optimised.

application application: applicationRef A reference to the application on which this
optimisation requirement applies.

component component: componentRef A reference to the component on which this
optimisation requirement applies.

metricContext metric context:

metricContextRef
A reference to the context of the metric to be
optimised, which can supply more details to
assist in the actual monitoring of this metric.

HardwareRequirement An abstract sub-class of hard requirement
which represents a hardware requirement.
Two alternative kinds of hardware
requirements can be modelled: qualitative
and quantitative.

QualitativeHardware

Requirement

 qualitative hardware

name {

 benchmark: double ..

(double)?
}

A concrete sub-class of
HardwareRequirement which represents a
qualitative requirement. Qualitative here
means non-numeric but linguistic. For
instance, based on the classification of VMs,
the capabilities of VMs according to the
computation aspects could be specified via
the values of "small", "medium" and "large".
Then, based on that classification, a
qualitative requirement could specify that
there is a need only for a "large" VM or a

need for a VM which is "medium" or "large".
Such a classification of VMs can be produced
via different techniques, including
benchmarking.

minBenchmark The first double - see above This property of type double represents the
minimum linguistic value for this qualitative
requirement.

maxBenchmark The second double - see syntax at
class level

This property of type double represents the
maximum linguistic value for this qualitative
requirement.

QuantitativeHardwar

eRequirement

 quantitative hardware

name {

 (core: int .. (int)?)?

 (ram: int .. (int)?)?

 (storage: int ..

(int)?)?

 (cpu: double ..

(double)?)?
}

This concrete sub-class of
HardwareRequirement represents a
quantitative requirement over the
characteristics of a VM. Such characteristics
span the number of cores, the CPU
frequency, the size of main memory and the
storage size. Via such a requirement, ranges
over these characteristics can be specified.

minCPU An attribute of type double which represents
the minimum value of the CPU frequency of
the required VM. A value of 0.0 signifies that
there is no lower bound on this VM
characteristic.

maxCPU An attribute of type double which represents
the maximum value of the CPU frequency of
the required VM. A value of 0.0 signifies that
there is no upper bound on this VM
characteristic.

minCores An attribute of type integer which represents
the minimum value of the number of cores of
the required VM. A value of 0 signifies that
there is no lower bound on this VM
characteristic.

maxCores An attribute of type integer which represents
the maximum value of the number of cores
of the required VM. A value of 0 signifies that
there is no upper bound on this VM
characteristic.

minRAM An attribute of type integer which represents
the minimum value of the RAM size of the
required VM. A value of 0 signifies that there
is no lower bound on this VM characteristic.

maxRAM An attribute of type integer which represents
the maximum value of the RAM size of the
required VM. A value of 0 signifies that there
is no upper bound on this VM characteristic.

minStorage An attribute of type integer which represents
the minimum value of the storage size of the
required VM. A value of 0 signifies that there

is no lower bound on this VM characteristic.

maxStorage An attribute of type integer which represents
the maximum value of the storage size of the
required VM. A value of 0 signifies that there
is no upper bound on this VM characteristic.

ProviderRequirement provider requirement

name {

 inner def ...
}

A concrete sub-class of HardRequirement
which represents a requirement over the
cloud provider(s) that can be selected for a
certain VM or a specific set of VMs. This
requirement can actually specify not only one
but multiple cloud providers that can be
preferred by the user.

providers providers: [

providerRef(,providerRef)*
]

A reference to the cloud providers (see
CloudProvider class in organisation meta-
model) that are preferred for the
deployment of a VM or set of VMs.

OsOrImageRequiremen

t

 An abstact sub-class of HardRequirement
which specifies an OS or image requirement.
This is a convenience class representing a
exclusive OR combination of such
requirements as one from these two kinds of
requirements is usually expressed, as users
either just need a specific OS for their VMs or
also a certain image for instantiating these
VMs.

OSRequirement os name {

 inner def ...
}

A concrete sub-class of
OsOrImageRequirement which represents a
specific OS requirement for one or more VMs
in a deployment model. Such a requirement
demands the modelling of two attributes: the
actual OS and whether it should be 64-bit or
not.

os os: 'string'

A String attribute representing the actual OS
required.

is64os ('64os')? A boolean attribute indicating whether the
OS is 64-bit or not. By default, the value of
true is assumed.

ImageRequirement image name {

 inner def ...
}

A concrete sub-class of
OsOrImageRequirement which represents a
requirement over the image of one or more
VMs in a deployment model.

imageId imageId: 'string' A String attribute which specifies the id of the
image required. Please note that the image
can be either cloud-specific (i.e., mapping to
image templates offered in a certain cloud)
or user-specific (i.e., mapping to images
prepared by the user him/herself).

SecurityRequirement security requirement name

{

 inner def ...

A concrete sub-class of HardRequirement
which represents a high-level security
requirement. Such a requirement explicates

} the set of security controls that have to be
already implemented for a cloud provider in
order to be selected (in particular, for
selecting the VM offerings of this cloud
provider).

securityControls controls: [

securityControlRef(,security

ControlRef)*
]

A reference to the security controls (see
SecurityControl class in security meta-model)
that have to be realised by a selected cloud
provider.

application application: applicationRef

A reference to the application over which the
security requirement applies. This means
that when this reference is applied, then this
requirement applies to all the components of
the referenced application and thus to each
cloud provider that has been selected to host
these components.

component component:

internalComponentRef
A reference to an internal application
component on which the security
requirement should hold. This means that
only the selected provider on which the
component will be hosted should comply to
this requirement.

LocationRequirement location requirement name

{

 inner def ...
}

A concrete sub-class of HardRequirement
which represents a requirement over the
placement of one or more VMs in a
deployment model. The requirement maps to
expressing a set of preferred locations over
which such placement is required to be
performed.

locations locations: [

locationRef(,locationRef)*
]

A reference to the preferred locations over
which the VM placement can be performed.
Both cloud-specific and physical locations can
be referred to here.

ScaleRequirement An abstract class of HardRequirement which
represents a scale requirement over an
application component or a VM.

HorizontalScaleRequ

irement

 horizontal scale

requirement name {

 component:

internalComponentRef

instances: int .. int
}

A concrete sub-class of ScaleRequirement
which represents a horizontal scaling
requirement. Such a requirement expresses a
range over the number of instances that can
be generated for a certain application
component.

minInstances See first integer above An integer attribute that represents the
minimum number of instances that have to
be generated for the application component
referenced. A positive value should be
provided for this attribute.

maxInstances See second integer in the syntax at
the class level.

An integer attribute that represents the
maximum number of instances that have to
be generated for the application component
referenced. Either a positive or a value of -1

should be provided for this attribute. In the
former case, this value should be greater or
equal to the one provided for the
maxInstances attribute. In the latter case,
this value represents positive infinity
signifying that the user does not impose an
upper bound on the number of instances of
the referenced component.

component A reference to the internal application
component on which the scale requirement
is specified.

VerticalScaleRequir

ement

 vertical scale

requirement name {

 vm: vmRef

(core: int .. (int)?)?

(ram: int .. (int)?)?

(storage: int .. (int)?)?

(cpu: double ..

(double)?)?
}

A concrete sub-class of ScaleRequirement
which represents a requirement over the size
of a VM, i.e., over the values that the VM
characteristics can take. To this end, min and
max values are allowed to be specified for all
4 characteristics of a VM, i.e., the CPU
frequency, the number of cores, the RAM
size and the storage size. At least one bound
over at least one VM characteristic should be
provided in order for an instance of a
VerticalScaleRequirement to be meaningful
and valid.

minCPU An attribute of type double which represents
the minimum value of the CPU frequency of
the VM referenced by this vertical scale
requirement. The value of this attribute
should be greater or equal to 0.0 (where 0.0
indicates that we do not care for the value of
this attribute).

maxCPU An attribute of type double which represents
the maximum value of the CPU frequency of
the VM referenced by this vertical scale
requirement. The value of this attribute
should be either positive or equal to -1. A
positive value should also be greater or equal
to the value of the minCPU attribute. A value
of -1 denotes positive infinity and signifies
that the user is open for the upper limit of
this VM characteristic.

minCores An attribute of type integer which represents
the minimum value of the number of cores of
the VM referenced by this vertical scale
requirement. The value of this attribute
should be greater or equal to 0.0 (where 0.0
indicates that we do not care for the value of
this attribute).

maxCores An attribute of type integer which represents
the maximum value of the number of cores
of the VM referenced by this vertical scale
requirement. The value of this attribute
should be either positive or equal to -1. A

positive value should also be greater or equal
to the value of the minCores attribute. A
value of -1 denotes positive infinity and
signifies that the user is open for the upper
limit of this VM characteristic.

minRAM An attribute of type integer which represents
the minimum value of the RAM size of the
VM referenced by this vertical scale
requirement. The value of this attribute
should be greater or equal to 0.0 (where 0.0
indicates that we do not care for the value of
this attribute).

maxRAM An attribute of type integer which represents
the maximum value of the RAM size of the
VM referenced by this vertical scale
requirement. The value of this attribute
should be either positive or equal to -1. A
positive value should also be greater or equal
to the value of the minRAM attribute. A value
of -1 denotes positive infinity and signifies
that the user is open for the upper limit of
this VM characteristic.

minStorage An attribute of type integer which represents
the minimum value of the storage size of the
VM referenced by this vertical scale
requirement. The value of this attribute
should be greater or equal to 0.0 (where 0.0
indicates that we do not care for the value of
this attribute).

maxStorage An attribute of type integer which represents
the maximum value of the storage size of the
VM referenced by this vertical scale
requirement. The value of this attribute
should be either positive or equal to -1. A
positive value should also be greater or equal
to the value of the minStorage attribute. A
value of -1 denotes positive infinity and
signifies that the user is open for the upper
limit of this VM characteristic.

vm A reference to the VM on which the vertical
scale requirement applies.

OptimisationFunctio

nType

 MIN or MAX An enumeration which represents the
concrete optimisation functions (i.e.,
MINIMISE and MAXIMISE) which should be
used in an OptimisationRequirement.

Metric Meta-Model

Condition An abstract class that represents a condition
over a non-functional term, either a Metric or
a Property. Conditions are building constructs
for modelling service level objectives and
events for scalability rules.

name A String attribute representing the name of
the condition

comparisonOperator comparisonOperator:

ComparisonOperatorType
An attribute that represents a comparison
operator. Such an operator is used to
compare the threshold provided (see next
property) with the actual value of the non-
functional term concerned. It takes values
from the ComparisonOperatorType
enumeration.

threshold threshold: double An attribute of type double which represents
the actual threshold that needs to be
imposed over the values of the non-
functional term referenced.

validity validity: date An attribute of type Date which represents
the final date over which the condition
specified is valid.

MetricCondition metric condition name {

 inner def ...
}

A concrete sub-class of Condition which
represents a condition over a Metric. As
many measurement details are needed for
enabling the evaluation of such a condition,
this class is associated with the context of the
metric (see MetricContext class later on).

metricContext context: metricContextRef A reference to the context of the metric on
which the condition applies.

PropertyCondition property condition name {

 inner def ...
}

A concrete sub-class of Condition which
represents a condition over a non-functional
property. As additional details have to be
specified for enabling the appropriate
evaluation of such a condition, this class is
associated with the context of the property
(see PropertyContext class later on) on which
the condition applies.

propertyContext property context:

propertyContextRef
The context of the property on which the
condition applies.

unit unit: unitRef The unit of measurement of the non-
functional property. Such a unit is supplied in
order to cover the variability in measurement
of such a property by different monitoring
systems.

timeUnit time unit:

timeIntervalUnitRef
-------------TO BE REMOVED------------

ComparisonOperatorT

ype

 = = or < or < = or <> or > or >= An enumeration that list all possible
comparison operators that can be used in
(non-functional term) conditions.

MetricInstance An abstract class that represents an instance
of a Metric. Such an instance represents a
concrete monitoring entity which can be
attached to a specific application object that
is to be measured. Depending on the kind of
the metric concerned, there can be instances

of raw and composite metrics.

name A String attribute that represents the name
of the metric instance

metric metric: metricRef A reference to the type of this metric
instance, i.e., a specific Metric.

schedule schedule: scheduleRef A reference to the measurement schedule
that applies for this metric instance
highlighting how often to measure it (see
also Schedule class later on)

window window: windowRef A reference to the measurement window
(see also Window class later on) that applies
for the metric instance which specifies how
many values need to be considered within a
specific window of a certain size in order to
be aggregated. Thus, this applies mainly for
instances of composite metrics.

objectBinding object binding:

metricObjectBindingRef
A reference to the object binding that applies
for this metric instance. Such a binding
associates this instance to a certain execution
context (see ExecutionContext class) as well
as to the instance of the object (e.g., internal
component or VM) that is being measured.

metricContext context: metricContextRef A reference to the context of the type of this
metric instance which provides appropriate
details for its measurement.

CompositeMetricInst

ance

 composite metric instance

name {

 inner def ...
}

A concrete sub-class of MetricInstance which
represents an instance of a composite metric.
As such a metric is composed of other
metrics, the instance of this metric is
associated with the instances of all the
composing metrics of this metric.

composingMetricInstances composing metric

instances: [

metricInstanceRef(,metricIn

stanceRef)*
]

A reference to the composing metric
instances of this composite metric (i.e., the
instances of metrics which are components
of this instance's metric).

RawMetricInstance raw metric instance name

{

 inner def ...
}

A concrete sub-class of MetricInstance which
represents an instance of a RawMetric. As
raw metrics are usually measured via
sensors, this class is associated with the
sensor used to measure this metric instance.

sensor sensor: sensorRef A reference to the sensor which is used to
measure this raw metric instance.

MetricFormulaParame

ter

 parameter name {

 inner def ...
}

A class which represents a parameter which
can be used as input in the formula of a
CompositeMetric. Different kinds of metric
formula parameters can be specified (e.g.,
metrics or formulas). In addition, a metric
formula parameter can represent a certain
value/constant (see SingleValue class).

name A String attribute that represents the name
of the metric formula parameter.

value value: single value inner

def ...

A reference to a SingleValue which
represents a constant metric formula
parameter.

MetricFormula metric formula name {

 function arity:

MetricFunctionArityType

(function pattern:

FunctionPatternType)?

MetricFunctionType (

metricFormulaParameterRef
(,

metricFormulaParameterRef)

*)
}

A concrete sub-class of
MetricFormulaParameter which represents a
particular formula via which a composite
metric can be measured. A formula just
represents the application of a function over
a set of input metric formula parameters.
Thus, as a metric formula is also such a
parameter, a hierarchy of metric formulas
can be expressed even for a single composite
metric mapping to the expression of
advanced, complicated metric aggregation
computations.

function See syntax at class level An attribute that represents the actual
concrete function that is applied in the
formula of a composite metric. The type of
this attribute maps to the
MetricFunctionType enumeration that lists all
possible metric formula functions.

functionArity See syntax at class level This attribute represents the arity of the
function that is applied in the formula of a
composite metric. Such an arity is associated
with the size of the input parameters set that
should be exploited in the metric formula
computation. Depending on the function
exploited by a metric formula, a different
arity might apply. For instance, the MEAN
function maps to an UNARY arity meaning
that one input parameter should be involved
in the composite metric formula. The type of
the attribute relates to the
MetricFunctionArityType enumeration that
specifies all possible kinds of arities that can
be involved.

functionPattern See syntax at class level This attribute signifies what is the pattern of
the formula function exploited and takes
values from the FunctionPatternType
enumeration. Two kinds of patterns apply
here: MAP and REDUCE. The MAP pattern
indicates that the values of the input
parameters are mapped to another value (via
typical mathematical operators), while the
REDUCE pattern indicates that the values of
usually one input parameter are
reduced/aggregated into one (via the use of
statistical functions/operators).

parameters See syntax at class level A reference to the set of input parameters
used in the metric formula.

Metric An abstract sub-class of the
MetricFormulaParameter which represents a
metric, i.e., a conceptualisation of various
monitoring details for the measurement of a
particular non-functional property. Two kinds
of metrics can be expressed: (a) raw metrics
that are directly measured via sensors; (b)
composite metrics which are computed from
formulas applied on the
values/measurements of other metrics.

description description: 'string' A String attribute that can be used to specify
a textual description of the metric targeting
human users.

valueType value type: valueTypeRef A reference to the domain of values / value
type (see ValueType class) of the metric. Such
a domain is a restriction over the possible
measurement values that a metric can take.

valueDirection value direction: short An attribute of type short which indicates the
preferred direction of values for a certain
metric. A value of 1 indicates that the metric
is positively monotonic while a value of 0
indicates that the metric is negatively
monotonic. Positive monotonicity favours
greater values / measurements for a metric
(i.e., the greater is the value, the better)
while negative monotonicity favours smaller
metric measurement values (i.e., the smaller
is the value, the better).

unit unit: unitRef A reference to the unit of measurement (see
Unit class) for this metric.

layer layer: LayerType An attribute that represents the layer on
which the metric applies which takes values
from the LayerType enumeration. A metric at
the IaaS layer, for example, would measure
elements/objects at that layer, i.e., VMs.

property property: propertyRef A reference to the non-functional
(MEASURABLE) property that is measured by
this metric.

isVariable (variable)? A boolean attribute which indicates whether
the metric can be considered also as a
variable in the formulation of a constraint
model that can be used to solve a
deployment reasoning problem for the
application components.

CompositeMetric composite metric name {

 inner def ...
}

A concrete sub-class of Metric representing a
composite metric, i.e., a metric which is
computed via the application of a certain
formula over the values / measurements of
other metrics.

formula metric formula def ... A containment reference to the metric
formula from which the composite metric is

computed.

RawMetric raw metric name {

 inner def ...
}

A concrete sub-class of Metric representing a
raw metric, i.e., a metric which is directly
measured via a sensor.

MetricFunctionArity

Type

 UNARY or BINARY or N_ARY An enumeration which explicates the exact
kinds of arities that can apply to metric
functions (which are used in the formulas of
composite metrics). Three kinds of arities are
modelled as members of this enumeration:
(a) UNARY: this means that the function
should take only one parameter as input; (b)
BINARY: this indicates that the function
should take exactly two parameters as input;
(c) N_ARY: this signifies that the function
should take at least two parameters as input.

MetricFunctionType COUNT or DERIVATIVE or DIV or
MAX or MEAN or MEDIAN or MIN or
MINUS or MODE or MODULO or
PERCENTILE or PLUS or STD or TIMES

An enumeration that list all functions that
can be used in the computation of values for
a composite metric. Such functions, members
of this enumeration, span typical
mathematical operators (e.g., TIMES) as well
as statistical operators (e.g., MEAN).

MetricObjectBinding An abstract class that represents the binding
between an instance of a metric and the
instance of the object (e.g., internal
component or VM) that is being measured.
Such a binding takes place under a certain
execution context, i.e., a specific deployment
episode involving the user application at
hand.

name A String attribute representing the name of
the binding.

executionContext execution context:

executionContextRef
A reference to the execution context
(application deployment episode) under
which the binding holds.

MetricApplicationBi

nding

 application binding name

{

 inner def ...
}

A concrete sub-class of MetricObjectBinding
which represents the binding of a metric
instance to a specific user application. As the
execution context, referenced and inherited
by the parent class is associated with the
application at hand, no other information
needs to be specified for this class.

MetricComponentBind

ing

 component binding name {

 inner def ...
}

A concrete sub-class of MetricObjectBinding
which represents the binding of a metric
instance to an instance of a certain
application component.

vmInstance vm instance:

vmInstanceRef
A reference to the instance of a VM on which
the bound instance of the application
component has been deployed. This
reference does not need to be always
modelled. This depends on whether this
constitutes important information for the

monitoring system.

componentInstance component instance:

componentInstanceRef
A reference to the instance of the
(application) component that is bound by this
metric (instance) binding.

MetricVMBinding vm binding name {

 inner def ...
}

A concrete sub-class of MetricObjectBinding
which represents a binding of a specific VM
instance to a certain metric instance.

vmInstance vm instance:

vmInstanceRef
A reference to the instance of the VM that is
bound on the corresponding metric instance.

Property property name {

 inner def ...
}

A class that represents a non-functional
property. A property can be measurable or
abstract. A measurable property can be
measured via one or more metrics. An
abstract property cannot be measured but
comprises more concrete properties that
could be measured instead.

name A String attribute that represents the name
of the non-functional property

description description: 'string' A String attribute that can be used to provide
a textual description of the property for
human consumption reasons.

type type: PropertyType An attribute that denotes the type of the
property. This attribute takes values from the
PropertyType enumeration. As already
indicated, a property can be measurable or
abstract. To this end, two corresponding
members of the aforementioned
enumeration have been modelled to be able
to specify these two alternatives.

subProperties sub-properties [

propertyRef (,

propertyRef)*]

A reference to the sub properties of an
abstract property.

sensors sensors [sensorRef (,

sensorRef)*]

A reference to a set of sensors that can be
used in the measurement of corresponding
raw metrics that can measure the current
property.

PropertyType ABSTRACT or MEASURABLE An enumeration that lists the two main kinds
of a non-functional property (MEASURABLE
and ABSTRACT).

Schedule schedule name {

 inner def ...
}

A concrete class which represents the
measurement schedule for a metric. Such a
schedule might have a starting and ending
time and it can be repeated with a particular
time frequency. The number of repetitions
can also be restrained, if needed. Such a
schedule can be provided for both raw and
composite metrics and is coupled to them via
their (metric) context. In case such a
schedule is not provided, then the
corresponding measurement system should

be able to derive it somehow in the most
appropriate way.

name A String attribute representing the name of
the schedule

start start: date A date attribute which denotes the starting
time point for the schedule.

end end: date A date attribute which denotes the ending
time point for the schedule

type type: ScheduleType An attribute which denotes the type of the
schedule, taking values from the
ScheduleType enumeration. In case the value
of this attribute equals the SINGLE_EVENT
member of that enumeration, this means
that the schedule maps to the occurrence of
just one measurement and not to the
repeated production of multiple
measurements for a certain metric. As such,
no further details need to be provided for
this schedule (with respect to the values of
the rest of the attributes apart from the
name one).

unit unit: timeIntervalUnitRef A reference to a TimeInternalUnit which
indicates the unit of time for the frequency /
internal of this schedule.

repetitions repetitions: int An attribute of type integer that denotes the
number of times a measurement for the
metric must be produced (according to the
time interval specified - see next attribute)

interval interval: long An attribute of type long that represents the
internal between the time points involved in
the production of a measurement for the
metric correlated to this schedule.

ScheduleType FIXED_RATE or FIXED_DELAY or
SINGLE_EVENT

An enumeration that list all kinds of
Schedules that can be modelled.

Sensor sensor name {

 inner def ...
}

A concrete class that represents a sensor.
Such a sensor is able to produce
measurements for raw metrics. A sensor can
be seen as a software component that is
configurable and can be installed either
internally to a measurement system (either
at the cloud or the system domain) or can be
external (e.g., a user-specific sensor which
runs at the user domain).

name A String attribute that represents the name
of the sensor.

configuration configuration: 'string' A String attribute that encapsulates the
configuration of the sensor. For instance, in
the PaaSage platform such an attribute
contained two pieces of configuration
information: (a) the name of the metric to

report; (b) the (Java) class implementing the
sensor logic (not needed to be provided
when the sensor is external to the
monitoring system).

isPush (push)? A boolean attribute that indicates whether
the sensor should push the measurements to
the monitoring system or the system should
otherwise pull the generated measurements
from the sensor.

Window window name {

 inner def ...
}

A concrete class that represents a
measurement window mainly utilised for
measurement aggregation purposes (i.e., for
composite metric computation). There can
be different clusterings of windows according
to their size and type. Concerning the size,
windows can be either time-based (i.e.,
mapping to a time-based window size which
highlights that the window becomes full
when this time period is passed),
measurement-based (i.e., mapping to a
particular measurement size for the
window), or mixed spanning first-match (i.e.,
either one of the two aforementioned kinds
of size is reached to consider that the
window is full) or both-match (both sizes
need to be reached to consider that the
window is full). Concerning the type, only
two kinds of windows can be modelled: (a)
sliding meaning that the values stored in the
window slide as soon as new values are
entered and the window is already full; (b)
fixed meaning that the window is re-
initialised when it becomes fully occupied.
Depending on the value designated for these
two dimensions for a certain window,
different values should be provided for the
rest of the window attributes and
parameters (please see analysis below per
each attribute/property of this class).

name A String attribute representing the name of
the sensor.

unit unit: timeIntervalUnitRef A reference to a TimeIntervalUnit which
represents the unit of time used to denote
the time extent of the window. For instance,
if the unit is seconds and the value of
timeSize attribute is 5, then this means that
the window has as its extent a period of 5
seconds. This reference should not be given if
the size type of the window is
MEASUREMENTS_ONLY.

windowType window type: WindowType An attribute that represents the type of the
window taking its values from the

WindowType enumeration. As stated, two
types of window have been captured,
SLIDING and FIXED.

sizeType size type: WindowSizeType An attribute that represents the size type of
the window taking its values from the
WindowSizeType enumeration. Four
members of this enumeration have been
modelled as already indicated in the
description of the semantics of the Window
class: TIME_ONLY, MEASUREMENTS_ONLY,
FIRST_MATCH and BOTH_MATCH.

measurementSize measurement size: long The size of the window in terms of the
maximum number of measurements that it
can store. This attribute should not be given
any value when the size type of the window
is TIME_ONLY.

timeSize time size: long The time size of the window, i.e., the extent
or period of time considered until the
window is regarded to be full. This attribute
should not be given a value when the size
type of the window is
MEASUREMENTS_ONLY. When a value for
this attribute is given, then also a reference
to a time internal unit should be supplied via
the unit property.

WindowSizeType MEASUREMENTS_ONLY or
TIME_ONLY or FIRST_MATCH or
BOTH_MATCH

An enumeration representing the types of
window size and having as members the
aforementioned size types:
MEASUREMENTS_ONLY, TIME_ONLY,
FIRST_MATCH and BOTH_MATCH.

WindowType FIXED or SLIDING An enumeration representing the different
kinds of a window and having as members
the values: SLIDING and FIXED.

ConditionContext An abstract class that represents the context
for a particular condition. Such a context
encapsulates various kinds of information
that need to be utilised to support the proper
measurement of the metric involved in the
condition as well as the evaluation of the
condition itself. Such information spans the
object being measured, the non-functional
term (metric or property) involved in the
measurement, as well as restrictions at the
instance level which explicate for how many
instances of the referenced object need to be
measured and evaluated against the
condition threshold in order to consider that
the condition has been violated. Depending
on the kind of non-functional terms, two
different kinds of condition context can be
modelled: MetricContexts and
PropertyContexts.

name A String attribute representing the name of
the condition context.

component component: componentRef A reference to an internal (application)
component as the object that is being
measured.

application application: applicationRef A reference to the application being
measured. If this property is given but not
the component one, this signifies that the
measurement is performed for the whole
user application and not one of its
components. This leads to concluding that
the object being measured is the application
itself, in this case.

quantifier quantifier:

QuantifierType
An attribute taking values from the
QuantifierType enumeration which
represents a quantifier. This quantifier
indicates whether the condition is regarded
as violated when its threshold is surpassed by
the measurement(s) of all (logical AND
semantics), some or just one (logical OR
semantics) application component instance.

minQuantity quantity: double ..

(double)?

Note: also referring to next attribute
in this syntax

An attribute of type double which indicates
the minimum number of component
instances whose measurements lead to the
surpassing of the condition threshold in order
to consider that the condition is violated. To
be provided only when the quantifierType
equals to SOME.

maxQuantity See syntax of minQuantity attribute An attribute of type double which indicates
the maximum number of component
instances whose measurements lead to the
surpassing of the condition threshold in order
to consider that the condition is violated. To
be provided only when the quantifierType
equals to SOME.

isRelative (relative)? A boolean attribute which indicates whether
the values of the minQuantity and
maxQuantity attributes are relative or
absolute. Relative means that the values of
these attributes represent a percentage of
the overall number of instances of a certain
component/measurement object. Absolute
means that the values of these attributes
map to the actual number of instances of the
component / measurement object. For
instance, suppose that the value of this
attribute is true and that minQuantity and
maxQuantity are 0.2 and 0.6. This means that
when the measurements between 20% and
60% percent of the measured component
instances surpass the condition threshold,
then the condition is considered to be

violated.

QuantifierType ALL or SOME or ANY An enumeration that represents the different
kinds of a quantifier (ALL, ANY or SOME) for a
ConditionContext.

MetricModel metric model name {

 inner def ...
}

A concrete subclass of Model, representing a
metric model which acts as a container for all
measurement elements that have to be
specified, such as metrics, properties,
formulas, conditions and contexts.

 contexts (condition context def ...)* A containment reference to all the condition
contexts defined in this metric model

 metricInstances (metric instance def ...)* A containment reference to all metric
instances defined in this metric model

 conditions (condition def ...)* A containment reference to all conditions
defined in this metric model

 properties (property def ...)* A containment reference to all properties
defined in this metric model

 bindings (metric binding def ...)* A containment reference to all metric object
bindings defined in this metric model

windows (window def ...)* A containment reference to all windows
defined in this metric model

 schedules (schedule def ...)* A containment reference to all schedules
defined in this metric model

 parameters (metric formula parameter

def ...)*

A containment reference to all metric
formula parameters defined in this metric
model

 sensors (sensor def ...)* A containment reference to all sensors
defined in this metric model

 units (unit def ...)* A containment reference to all units defined
in this metric model

MetricContext An abstract sub-class of ConditionContext
which specifies the context for a certain
metric. Such a context refers to the metric
itself as well as provides measurement
details with respect to the metric scheduling
and window of measurement.

metric metric: metricRef A reference to the metric of this
MetricContext.

schedule schedule: scheduleRef A reference to the schedule of the metric
concerned. When this reference is not
provided, then either a default schedule is
computed by the monitoring system or it is
considered that the metric is measured on
demand. This depends on the nature of the
metric. For instance, for raw metrics, usually
the schedule needs to be derived. For
composite metrics, this depends on the
formula function. If this function maps to a

typical mathematical operator, then the
metric should be computed on demand (as
soon as new values for the component
metrics are produced). Otherwise, a certain
schedule for the composite metric should be
derived by the monitoring system.

window window: windowRef A reference to the measurement window of
the metric concerned. If this reference is not
provided, then a default window should be
calculated by the monitoring system.

CompositeMetricCont

ext

 composite metric context

name {

 inner def ...
}

A concrete sub-class of MetricContext which
represents the context for a composite
metric. Apart from the information provided
by the parent class, this class also refers to
the context of the composing metrics of this
composite metric. This is essential in order to
be able to provide all necessary
measurement details not only for the top
composite metric but also for its descendant
(composing) metrics.

composingMetricContexts composing metric contexts

[metricContextRef (,

metricContextRef)*]

A reference to the context of the composing
metrics of the composite metric concerned.

RawMetricContext raw metric context name {

 inner def ...
}

A concrete sub-class of MetricContext which
represents the context of a raw metric. As
raw metrics are produced from sensors while
all other needed measurement information is
inherited from the parent class, this class
only refers to the sensor exploited for
producing the measurements of the raw
metric concerned.

sensor sensor: sensorRef A reference to the Sensor that is used for
producing the measurements of the raw
metric concerned.

PropertyContext property context name {

 inner def ...
}

A concrete sub-class of ConditionContext
which represents the context of a non-
functional property. As such, as all
measurement details are inherited by its
parent class, this class only refers to the
property being concerned.

property property: propertyRef A reference to the property associated with
this property context.

FunctionPatternType MAP or REDUCE

An enumeration which represents all kinds of
function patterns (MAP & REDUCE in
particular - see also analysis of the
MetricFormula class).

Scalability Meta-Model

ScalabilityModel scalability model name {

 inner def ...
}

A concrete subclass of Model, representing a
scalability model which acts as a container
for all elements required for specifying

scalability rules, including the scalability rules
themselves.

rules (scalability rule def ...)* A containment reference to all scalability
rules defined in this scalability model

events (event def ...)* A containment reference to all events
defined in this scalability model

eventInstances (event instance def ...)* A containment reference to all event
instances defined in this scalability model

actions (action def ...)* A containment reference to all actions
defined in this scalability model

patterns (event pattern def ...)* A containment reference to all event
patterns defined in this scalability model

timers (timer def ...)* A containment reference to all timers defined
in this scalability model

scaleRequirements (scale requirement def ...)* A containment reference to all scale
requirements defined in this scalability model

BinaryPatternOperat

orType

 AND or OR or XOR or PRECEDES or
REPEAT_UNTIL

An enumeration of binary event pattern
operators, i.e., kinds of operators used for
composing two events into an event pattern.
Such operators include typical logical
operators (e.g., AND) as well as time-based
operators which include PRECEDES (i.e., the
first event in the pattern precedes the
second one) and REPEAT_UNTIL (repetition
of first event in the pattern, possibly
constrained via a range over the minimum
and maximum occurrence number of this
first event, until a specific (second) event
occurs or a timer is fired (denoting the end of
a specific time period).

Event An abstract class that represents an event
that can lead to the triggering of a scalability
rule. Events can be simple or composite (i.e.,
event patterns).

name A String attribute that represents the name
of the event.

EventPattern An abstract sub-class of Event that represents
an event pattern (a combination of one or
more events). An event pattern might include
a Timer, an entity which can express the
occurrence of a time event which can be
correlated with other, normal events in the
event pattern.

timer timer: timerRef A reference to a Timer element that can be
associated to this event pattern.

BinaryEventPattern binary event pattern name

{

 inner def ...
}

A concrete sub-class of EventPattern which
represents a pattern or composition of either
two events or one event and a Timer. The
two component elements of a pattern can be

combined via the use of a binary event
pattern operator (see
BinaryPatternOperatorType enumeration).

leftEvent left event: eventRef A reference to the first event in the event
pattern. If this reference is not given, this
means that the first event is represented by
the Timer element. Please note that as the
Timer can occupy one from the two possible
event positions in a pattern, this means that
at least one of leftEvent or rightEvent
references needs to be always provided.

rightEvent right event: eventRef A reference to the second event in the event
pattern. If this reference is not given, this
means that the second event is represented
by the Timer element. Please note that as the
Timer can occupy one from the two possible
event positions in a pattern, this means that
at least one of leftEvent or rightEvent
references needs to be always provided.

lowerOccurrenceBound lower occurrence bound:

int
An attribute of type integer which denotes
the lower bound on the occurrence of an
event in a pattern composition that is
governed by the REPEAT_UNTIL binary event
pattern operator. Such a lower bound can
also be zero (default value) which can either
mean that the bound is not considered at all
(operator different than REPEAT_UNTIL) or
that a non-occurrence of the first event in
the pattern is also allowed (operator is
REPEAT_UNTIL).

upperOccurrenceBound upper occurrence bound:

int
An attribute of type integer which denotes
the upper bound on the occurrence of an
event in a pattern composition that is
governed by the REPEAT_UNTIL binary event
pattern operator. Such an upper bound can
also be zero (default value) which can either
mean that the bound is not considered at all
(operator different than REPEAT_UNTIL) or
that the upper bound is open (operator is
REPEAT_UNTIL). Please note that if this
bound is positive, then it should always be
greater or equal to the lower occurrence
bound.

operator operator:

BinaryPatternOperatorType
An attribute taking values from the
BinaryPatternOperatorType enumeration
representing the actual binary event pattern
operator that is exploited for composing the
component events (or event plus Timer
elements) of the event pattern.

UnaryEventPattern unary event pattern name

{

 inner def ...

A concrete sub-class of EventPattern which
represents a unary event pattern. Such a
pattern always involves one event as well as

} a unary pattern operator, and in one case
(i.e., when the WHEN operator is used) also a
Timer element.

event event: eventRef A reference to the sole event involved in the
event pattern.

occurrenceNum occurrence num: int An attribute of type integer which denotes
the number of occurrences of the sole event
referenced. A positive value for this attribute
should only be used when the unary pattern
operator is REPEAT denoting an exact
repetition in number of the event concerned.

operator operator:

BinaryPatternOperatorType
An attribute taking values from the
UnaryPatternOperatorType enumeration
which represents the kind of unary pattern
operator utilised in the event pattern. Four
values can be provided for this attribute
mapping to a corresponding member of this
enumeration: (a) EVERY: has the semantics of
"each", meaning that we consider here each
occurrence of an event in an individual
manner; (b) NOT: classical unary logical
operator which in this case denotes the non-
occurrence of the event referenced; (c)
REPEAT: denotes an exact number of
occurrences of the event referenced; (d)
WHEN: denotes that the referenced event
needs to occur within a specific time period
expressed via a Timer element.

SimpleEvent An abstract sub-class of Event which
represents a single and thus not composite
event (either combined with a unary
operator or participating in a binary event
composition). Simple events can be either
functional or non-functional.

FunctionalEvent functional event name {

 inner def ...
}

A concrete sub-class of SimpleEvent which
represents a functional event. Such an event
can map to a certain fault, e.g.,
characterising the whole application or one
of its components (for instance a permanent
component failure or a temporary bug that
can be usually resolved by restarting that
component) or even the infrastructure
hosting the application components (e.g., VM
failure).

functionalType functional type: 'string' A String attribute which represents the type
of the functional event. We consider here
that a customised taxonomy of functional
events can be built such that it can be
referenced by this attribute. This is a rather
different way of modelling such an attribute
with respect to other CAMEL classes which is
due to the fact that the taxonomy here is not

generic and thus amenable for being
modelled via a certain enumeration.

Non-FunctionalEvent non-functional event

name {

 inner def ...
}

A concrete sub-class of SimpleEvent which
denotes a non-functional event, i.e., an event
that is not directly related to the functionality
of the application. Non-functional events are
usually expressed via a reference to a metric
condition (see MetricCondition class) along
with the specification of an additional
boolean attribute which signifies whether the
violation of the condition should trigger the
generation of the event or the satisfaction of
this condition.

metricCondition metric condition:

metricConditionRef
A reference to a metric condition whose
violation or satisfaction leads to the
generation of this non-functional event.

isViolation (violation)? A boolean attribute which signifies that
either the violation of the metric condition
(true value) should lead to the generation of
this non-functional event or the satisfaction
of this metric condition.

EventInstance event instance name {

 inner def ...
}

A concrete class that represents an instance
of a specific event. Such an instance is
generated by evaluating the metric condition
over a measurement produced for a certain
instance of the metric at hand.

name A String attribute representing the name of
the event instance.

status status: StatusType An attribute that represents the exact status
of the event and takes values from the
StatusType enumeration. The latter indicates
whether an event instance is FATAL (e.g.,
application cannot be executed), CRITICAL
(e.g., an SLO has been violated), WARNING
(e.g., we are near a SLO condition threshold)
or SUCCESS (e.g., this represents a normal
and thus non-problematic instance of an
event).

layer layer: LayerType An attribute that refers to the layer (please
see LayerType class) that applies for this
event instance.

event event: eventRef A reference to the type of this event
instance, i.e., the actual event concerned.

metricInstance metric instance:

metricInstanceRef
A reference to the metric instance that led to
the measurement which triggered the
generation of the event instance. Please note
that the metric of that instance should have
been involved in the metric condition
referenced by the event/type of this event
instance.

ScalabilityRule scalability rule name {

 inner def ...
}

A concrete class that represents a scalability
rule. Such a rule is a mapping from an event
to one or more actions (usually scaling ones)
which can enable the adaptive
reconfiguration of an application in a local /
cloud-based manner.

name A String attribute that represents the name
of a scalability rule.

event event: eventRef A reference to the event (simple or event
pattern) that leads to the triggering of the
scalability rule.

actions actions [actionRef (,

actionRef)*]

A reference to a set of actions (usually scaling
ones) that need to be executed when the
scalability rule is triggered.

entities entities [entityRef (,

entityRef)*]

A reference to the entity (user or application)
that has designed the scalability rule.

scaleRequirements scale requirements [

scaleRequirementRef (,

scaleRequirementRef)*]

A reference to a set of scale requirements
(see ScaleRequirement class) that need to be
obeyed during the execution of the scalability
rule. Actually such requirements constraint
the way the scalability rule can be executed.
For instance, a horizontal scale requirement
constraints the number of instances that can
be created for a certain application
component.

ScalingAction An abstract sub-class of Action that denotes a
scaling action which can be either horizontal
or vertical. In both cases, there is a need to
reference the VM concerned. This is needed
for an horizontal scaling action in order to
clarify the respective hosting, i.e., to which
exactly VM on which the component to be
scaled has been deployed, something
essential if an application component is
deployed on multiple VMs within the same
deployment episode. Trivially a vertical
scaling action need to refer to the scaling of a
certain VM.

vm vm: vmRef A reference to the VM concerned.

HorizontalScalingAc

tion

 horizonal scaling action

name {

 inner def ...
}

A concrete sub-class of ScalingAction which
represents a horizontal scaling action. Such
an action leads to scaling out or in a certain
component according to a specific number of
instances.

count count: int An attribute of type integer that represents
the number of instances to be added or
removed for the internal component
concerned, depending on the kind of the
horizontal scaling action.

internalComponent internal component: A reference to the InternalComponent to be

internalComponentRef scaled.

VerticalScalingActi

on

 vertical scaling action

name {

 inner def ...
}

A concrete sub-class of ScalingAction that
denotes a vertical scaling action. Such an
action indicates whether a certain VM should
be scaled up (acquire more resources) or
down (acquire less resources). To this end,
respective attributes have been modelled
which represent the difference in the amount
of a specific VM characteristic (e.g., number
of cores) that needs to take effect.

memoryUpdate memory update: int An attribute of type integer that represents
the amount of main memory that has to be
additionally reserved (positive value) or
released (negative value) for the VM
concerned. A value of 0 means that this kind
of VM characteristic remains untouched.

CPUUpdate cpu update: double An attribute of type double that represents
the amount of CPU frequency that has to be
additionally reserved (positive value) or
released (negative value) for the VM
concerned. A value of 0 means that this kind
of VM characteristic remains untouched.

coreUpdate core update: int An attribute of type integer that represents
the amount of cores that has to be
additionally reserved (positive value) or
released (negative value) for the VM
concerned. A value of 0 means that this kind
of VM characteristic remains untouched.

storageUpdate storage update: int An attribute of type integer that represents
the amount of storage that has to be
additionally reserved (positive value) or
released (negative value) for the VM
concerned. A value of 0 means that this kind
of VM characteristic remains untouched.

ioUpdate io update: int An attribute of type integer that represents
the amount of IO throughput that has to be
additionally accommodated (positive value)
or decommissioned (negative value) for the
VM concerned. A value of 0 means that this
kind of VM characteristic remains untouched.

networkUpdate network update: int An attribute of type integer that represents
the amount of network throughput that has
to be additionally accommodated (positive
value) or decommissioned (negative value)
for the VM concerned. A value of 0 means
that this kind of VM characteristic remains
untouched.

Timer timer name {

 inner def ...
}

A concrete class that represents a timer. Such
a timer represents certain time periods that
either need to be passed (having as type the
value of INTERVAL) or within which one or

more events need to take place (having as
type the value of WITHIN or WITHIN_MAX).
The difference between the WITHIN and
WITHIN_MAX kinds of timers is that in the
second case there should be a maximum
number of respective event(s) that need to
take place within the time period defined. If
this maximum number is reached, the
respective pattern is considered to be
satisfied and the timer finishes. If it is not,
then the timer finishes when the time period
defined is ended.

name A String attribute that represents the name
of the timer.

type type: TimerType An attribute taking values from the
TimerType enumeration that denotes the
exact kind of the timer concerned (see also
discussion in Timer class).

timeValue time value: int An attribute of type integer that denotes the
time interval size for the time period
pertaining to the timer.

maxOccurrenceNum max occurrence num: int An attribute of type integer that denotes the
maximum number of occurrences of the
event correlated to this timer that need to
take place before the timer can be finished,
unless the time period defined by the timer
expires first. The value of this attribute
should be only positive instead of 0 when the
type of the timer is WITHIN_MAX.

unit unit: timeIntervalUnitRef A reference to a TimeInternalUnit for the
time period of the timer.

TimerType WITHIN or WITHIN_MAX or
INTERVAL

An enumeration that lists the kinds
(INTERVAL, WITHIN, WITHIN_MAX) of a
timer. See also description of these kinds in
the analysis of the Timer class.

UnaryPatternOperato

rType

 EVERY or NOT or REPEAT or WHEN An enumeration that lists all possible kinds
(EVERY, NOT, REPEAT, WHEN) of unary
pattern operators. See also description of
these kinds in the analysis of the
UnaryEventPattern class.

StatusType CRITICAL or WARNING or SUCCESS
or FATAL

An enumeration that all possible status
values (CRITICAL, WARNING, SUCCESS,
FATAL) for an event instance. See also
description of these kinds in the analysis of
the EventInstance class.

Security Meta-Model

SecurityModel security model name {

 inner def ...
}

A concrete subclass of Model that represents
a security model, i.e., a container of different
security elements that can be used to define
security requirements and capabilities.

securityControls (security control def ...)* A containment reference to all security
controls that can be defined in this security
model.

securityRequirements (security requirement def

...)*

A containment reference to all security
requirements that can be defined in this
security model.

securityProperties (security property def ...)* A containment reference to all security
properties that can be defined in this security
model.

rawSecurityMetrics (raw security metric def ...)* A containment reference to all raw security
metrics that can be defined in this security
model.

compositeSecurityMetrics (composite security metric

def ...)*

A containment reference to all composite
security metrics that can be defined in this
security model.

rawSecurityMetricInstances (raw security metric instance

def ...)*

A containment reference to all raw security
metric instances that can be defined in this
security model.

compositeSecurityMetricInsta

nces
(composite security metric

def ...)*

A containment reference to all composite
security metric instances that can be defined
in this security model.

securityDomains (security domain def ...)* A containment reference to all security
domains that can be defined in this security
model.

securityCapabilities (security capability def ...)* A containment reference to all security
capabilities that can be defined in this
security model.

securitySLOs (security slo def ...)* A containment reference to all security SLOs
that can be defined in this security model.

SecurityDomain security model id {

 inner def ...
}

A concrete class that represents a security
domain (e.g., Application and Interface
Security). A security domain can be further
separated into security sub-domains (e.g.,
Application Security).

id A String attribute that defines the unique
code for the security domain (e.g., AIS).

name name: 'string' A String attribute that defines the name of
the security domain (e.g., Application and
Interface Security)

subDomain sub-domains [

securityDomainRef (,

securityDomainRef)*]

A reference to all security sub-domains that
belong to this domain.

SecurityControl security control name {

 inner def ...
}

A concrete class that represents a security
control, i.e., a high-level security capability or
requirement. Such a security control is
associated to other security elements (i.e.,
security properties and metrics) which
enable associating it to more fine-grained

security capabilities or requirements (i.e.,
security SLOs). Moreover, the monitoring of
the satisfaction of the fine-grained security
requirements that are associated with a
security control can enable to also to derive
the level of satisfaction of that security
control. Such a monitoring can then enable
the system to take adaptation / corrective
actions to remedy for the non-satisfaction of
a certain security control.

name A String attribute that represents the name
of the security control.

domain domain: securityDomainRef A reference to the domain in which the
security control belongs.

subDomain sub-domain:

securityDomainRef
A reference to the sub domain in which the
security control belongs.

specification specification: 'string' A String attribute used for textually
describing the security control for human
consumption purposes.

securityProperties security properties [

securityPropertyRef (,

securityPropertyRef)*]

A reference to all security properties that are
associated with this security control.

rawSecurityMetrics raw security metrics [

rawSecurityMetricRef (,

rawSecurityMetricRef)*]

A reference to all raw security metrics that
are associated with this security control.

compositeSecurityMetrics composite security

metrics [

compositeSecurityMetricRef
(,

compositeSecurityMetricRef)
*]

A reference to all composite security metrics
that are associated with this security control.

RawSecurityMetricIn

stance

 raw security metric

instance name {

 inner def ...
}

A concrete sub-class of
RawSecurityMetricInstance that represents a
raw security metric instance which inherits all
respective attributes and properties of its
parent class. More importantly, the reference
to the respective sensor is inherited, which
can be used to provide the measurements for
this security metric instance.

RawSecurityMetric raw security metric name

{

 inner def ...
}

A concrete sub-class of RawSecurityMetric
that represents a raw security metric which
inherits all respective attributes and
properties of its parent class, such as the
direction of values and the unit of
measurement. The rationale here is that any
security metric is a special kind of metric
which would then be associated to all
measurement-oriented information that can
be used to support its monitoring.

SecurityProperty property name { A concrete sub-class of Property which

 inner def ...
}

represents a security property. Such a
property is also associated to its respective
security domain. This class could be
instantiated to represent security properties
that are abstract as otherwise there is
another security property class which
represents a measurable security property.

domain domain: securityDomainRef A reference to the security domain to which
the security property belongs

Certifiable certifiable name {

 inner def ...
}

A concrete subclass of SecurityProperty
which represents a measurable / certifiable
security property that must be also
associated to a certain security metric.

SecuritySLO security slo name {

 inner def ...
}

A concrete subclass of ServiceLevelObjective
representing security SLOs. Such SLOs are a
special kind of SLOs which should be
associated to conditions that only involve
security metrics or properties.

SecurityCapability security capability name

{

 inner def ...
}

A concrete class that represents a high-level
security capability, i.e., a certain capability of
a cloud service provider to support a specific
set of security controls.

 name A String attribute that represents the name
of the security capability.

 securityControls controls [

securityControlRef (,

securityControlRef)*]

A reference to a set of security controls that
are supported via this security capability.

 dataCenter data center: dateCenterRef A reference to a data centre of the cloud
provider in which the security controls of the
respective capability have been realised. As
different capabilities might be implemented
in different data centres of the same cloud
provider, it is important to also keep an
account of the particular data centre in which
the security capability holds.

CompositeSecurityMe

tric

 composite security name {

 inner def ...
}

A concrete sub-class of a CompositeMetric
which represents a composite security
metric. Such a metric inherits more
importantly from its parent class the metric
formula that can be exploited for its
computation. Such formula will normally
involve only composing security metrics.

CompositeSecurityMe

tricInstance

 composite security metric

instance name {

 inner def ...
}

A concrete subclass of
CompositeMetricInstance which represents a
composite security metric instance. Such an
instance, through its parent class, is also
associated with the metric contexts of the
instances of the composing (security) metrics
of its type (composite security metric).

Provider Meta-Model

ProviderModel provider model name {

 inner def ...
}

A concrete subclass of Model that represents
the provider model of a certain cloud
provider. Such a model is a container of all
those elements that can be used to denote
all the cloud service offerings supplied by this
cloud provider.

constraints (constraint def ...)* A reference to a set of Constraints which
represent constraints across the same or
different features of the cloud provider that
include as sub-constraints restrictions over
the values of some attributes of these
features.

rootFeature root feature def ...

A containment reference to the root feature
of the cloud provider which could be
considered as the overall cloud of that
provider under which all offerings are
provided.

Attribute attribute name {

 inner def ...
}

A concrete class that represents an attribute
of a certain feature. For example, such an
attribute could represent the number of
cores for a VM feature. Each attribute can
have either a single fixed value or a value
type denoting that the values of such
attribute can vary (or both requiring then
that the single value should belong to the
value type but still signifying that the value of
the Attribute is fixed).

name A String attribute that represents the name
of the attribute.

value value: single value def ...

A containment reference to a SingleValue,
i.e., a single fixed value that the Attribute
takes for the feature that exhibits it. If also a
value to the valueType attribute is provided,
this means that the value attribute content
(i.e., the single value) would then have to be
member of this value type.

valueType value type: valueTypeRef A reference to a ValueType denoting the
domain of values for the Attribute
concerned. When a value for this attribute is
provided while no value is provided for the
value one, this means that the Attribute's
value can vary and it is the role of
AttributeConstraints to restrain it under a
certain context (e.g., a VM flavour in case of
VM features).

unitType unit type: UnitType An attribute taking values from the UnitType
enumeration which represents all possible
concrete units that can be modelled. This
attribute, when supplied, enables to
associate the Attribute concerned with a
certain unit of measurement (e.g., a storage

size Attribute would have as a unit the
GIGABYTES one)

AttributeConstraint attribute constraint name

{

 inner def ...
}

A concrete class that represents a constraint
over two attributes of the same or different
features. Such a constraint represents a
mapping between a value from the first
attribute to the value of the second. For
instance, if both attributes refer to the same
VM feature and if the first denotes the VM
flavour and the second the VM number of
cores, then the value "medium" for the first
attribute will be mapped to the value of 2 for
the second (highlighting that for the
"medium" VM flavour of this provider, the
number of cores is always 2).

name A String attribute that represents the name
of the attribute constraint.

from from: attributeRef A reference to the first Attribute of the
constraint.

to to: attributeRef A reference to the second Attribute (the
mapped one) of the constraint.

fromValue from value: singleValueRef A containment reference to the single value
of the first attribute (the mapping one).
Needless to say that this value should either
be the fixed value of that attribute or
otherwise belongs to the attribute's value
type.

toValue to value: singleValueRef A containment reference to the single value
of the second attribute (the mapped one).
Needless to say that this value should either
be the fixed value of that attribute or
otherwise belongs to the attribute's value
type.

Cardinality An abstract class that represents a cardinality
restriction for features or groups of features.
Such a restriction takes the form of a range
of integers which could be open on its upper
limit.

cardinalityMin cardinality: int .. int

Note: syntax also refers to next
attribute

An attribute of type integer that represents
the lower bound of the Cardinality. The
lowest possible value for this attribute is,
logically speaking 0, indicating that the
corresponding feature (or group of features)
might not appear always in a certain offering
of the cloud provider.

cardinalityMax please see above attribute syntax An attribute of type integer that represents
the upper bound of the Cardinality. If the
value of this attribute is positive, then it
should be greater that the value of the
minCardinality one. On the other hand, a
value of -1 signifies that the upper bound is

open, going to positive infinity.

FeatCardinality feature cardinality name

{

 inner def ...
}

A concrete subclass of Cardinality that
represents the default cardinality for a
certain feature. This means that unless not
otherwise stated, this feature should have
this default cardinality (when offered to a
certain client).

value value: int An attribute of type integer that represents
the actual default value of the feature
cardinality. This values should not be less
than the min cardinality and should not be
greater than the max cardinality, if that
cardinality is not open (positive infinity).

GroupCardinality group cardinality name {

 inner def ...
}

A concrete subclass of Cardinality that
represents the cardinality of a group of
features.

Clone clone name {

 inner def ...
}

A class that represents a clone of a certain
feature. Such a clone can have sub clones.

name A String attribute that represents the name
of a clone.

subClones sub-clones [cloneRef (,

cloneRef)*]

A containment reference to all sub-clones of
this clone.

Constraint An abstract class that represents a certain
constraint across the same or two different
features. Different concrete kinds of such a
constraint can be modelled. In any case, such
a constraint is associated with a set of
Attribute constraints which restrain the
values that some Attributes of the second
feature can take depending on the values of
some Attributes of the first feature (where
both features can also coincide as already
stated).

name A String attribute that represents the name
of the constraint.

from from: featureRef A reference to the first feature of this
constraint.

to to: featureRef A reference to the second feature of this
constraint.

attributeConstraints attribute constraints [

attributeConstraintRef (,

attributeConstraintRef)*]

A containment reference to a set of attribute
constraints over these two features (or a sole
one).

Exludes excludes name {

 inner def ...
}

A concrete subclass of Constraint which
denotes that the appearance of the first
feature excludes by default the appearance
of the second in a certain provider (bundle)
offering. In other words, the two features are
conflicting and can never be purchased

together in a certain (bundle) offering of the
cloud provider concerned. Needless to say
that usually in this case there is no need to
provide attribute constraints for this
constraint.

Implies implies name {

 inner def ...
}

A concrete subclass of Constraint which
denotes that the appearance of the first
feature implies the appearance of the
second. In case that these two features are
equal, then the implication is trivially moved
to the attribute constraints belonging to this
constraint.

Requires requires name {

 inner def ...
}

A concrete subclass of Constraint with more
restrictive semantics than Implies. In this
case, the appearance of the first feature
requires the appearance of the second.
Additionally, both features are subject to
specific cardinality and Scope restrictions.
Cardinality restrictions would signify that a
certain range cardinality for each feature
should apply for this kind of constraint. Scope
restrictions would signify that the scope of
each feature is global or local. Global means
that it maps to the level of the feature itself,
while local means that it maps to the
instance level, thus, holding for each instance
of the feature at hand.

scopeFrom scope from: scopeRef An optional reference to the Scope of the
first feature.

scopeTo scope to: scopeRef An optional reference to the Scope of the
second feature.

cardFrom card from:

featCardinalityRef
An optional reference to the cardinality of
the first feature.

cardTo card to: featCardinalityRef An optional reference to the cardinality of
the second feature.

Functional functional name {

 inner def ...
}

A concrete subclass of Requires which
represents a more restrictive form of this
super class. In this form, the appearance of
the first feature can lead to applying a certain
operator over a specific number of instances
(see value attribute) of the second feature.
Such an operator, belonging to the Operator
enumeration, could be either select (i.e.,
select a certain number of instances of the
second feature), add (i.e., require the
addition of a certain number of instances of
the second feature), remove (i.e., require the
removal of a certain number of instances of
the second feature), multiply (i.e., require
the multiplication of the number of instances
of the second feature with the value

provided), divide (i.e., require the division of
the number of instances of the second
feature with the value provided).

type type: Operator An attribute that takes values from the
Operator enumeration denoting the operator
to be applied on the number of instances of
the second feature.

value value: int An attribute of type integer which represents
the second argument given to the operator
apart from the current number of instances
of the second feature (i.e., operator=add &
value=2 would mean that we need to obtain
2 more instances for the second feature).

Feature feature name {

 inner def ...
}

A concrete class that represents a feature of
a cloud provider. Such a feature could
represent, for instance, a VM that can be
offered by that provider. Each feature is
associated to a set of attributes that
characterise it (e.g., could represent the
number of cores, the memory size, the VM
flavour, etc.). In addition, it can contain
additional sub-features (e.g., location could
be considered such a sub-feature). A feature
has a certain feature cardinality which
represents its default cardinality as well as
the minimum and maximum instances of
such a feature that could be exploited by
each client of the corresponding cloud
provider.

name A String attribute that represents the name
of the feature.

attributes attributes [attributeRef

(, attributeRef)*]

A containment reference to the list of
Attributes that belong to this feature and
characterise it.

subFeatures sub-features [featureRef

(, featureRef)*]

A containment reference to a list of sub-
features of this feature.

featureCardinality feat cardinality def ... A containment reference to the cardinality of
this feature.

clones clones [cloneRef (,

cloneRef)*]

A containment reference to the list of clones
of this feature.

Alternative alternative name {

 inner def ...
}

A concrete subclass of Feature that
represents an alternative feature with a set
of one or more variants (i.e., other features).
This means that one or more of these
variants could be exploited by a certain client
of the cloud provider concerned. When the
group cardinality is also specified for such a
feature, then the number of variants that can
be selected would need to conform to a
certain range (i.e., from 3 to 5 variants).

groupCardinality feat cardinality def ... A containment reference to the cardinality
of the variants of this alternative feature.

variants variants [feature def ...

(, feature def ...)*]

A containment reference to the variants of
this feature.

Exclusive exclusive name {

 inner def ...
}

A concrete subclass of Alternative that
represents an exclusive feature with a set of
one or more variants. Differently from an
Alternative feature, in the case of an
exclusive one, only one variant can be
exclusively selected by a client of the cloud
provider concerned. Needless to say that in
this case, the cardinality of the group of
variants included is not meaningful to be
specified.

Operator select or add or remove or multiply
or divide

An enumeration that represents a list of
concrete operators that can be applied in a
Functional constraint over the current
number of instances of the second feature
and the respective integer value given for
this constraint.

Scope An abstract class that represents the scope of
a feature. Two main concrete kinds of scope
exist: (a) Product and (b) Instance.

Instance instance {

 inner def ...
}

A concrete subclass of Scope which
represents an instance / local scope. This
means that the scope of a feature maps
locally to each instance of such a feature.

feature feature: featureRef A reference to the feature that maps to this
local scope.

Product product

A concrete subclass of Scope which
represents a product / global scope. This
means that the scope maps to the level of
the feature itself and not to each instance of
this feature.

Organisation Meta-Model

OrganisationModel organisation model name {

 inner def ...
}

A concrete subclass of Model that represents
the model of a certain organisation. This
model acts as a container of all sorts of
information that needs to be modelled for
the organisation concerned.

organisation (organisation def ...)? A containment reference to the organisation
concerned that is specified in this
organisation model.

provider (provider def ...)? A containment reference to the cloud
provider concerned that is specified in this
organisation model. As a cloud provider is
considered as a special kind of an
organisation, either the organisation or
provider containment reference should be
strictly provided in an organisation model.

externalIdentifiers (external identifier def ...)* A containment reference to a set of external
identifiers that can be used to distinguish /
uniquely identify the users of an organisation
in this organisation model.

users (user def ...)* A containment reference to the users
specified in this organisation model.

userGroups (user group def ...)* A containment reference to the groups of
users specified in this organisation model.

dataCentres (date centre def ...)* A containment reference to the data centres
specified in this organisation model. Such
data centres should only be provided when a
cloud provider is concerned and not any
other kind of an organisation.

roles (role def ...)* A containment reference to the roles
specified in this organisation model.

roleAssignments (role assignment def ...)* A containment reference to the role
assignments specified in this organisation
model.

permissions (permission def ...)* A containment reference to the permissions
specified in this organisation model.

securityLevel security level:

SecurityLevel
An attribute that takes values from the
SecurityLevel enumeration which denotes the
different security levels that might be applied
over the access to the resources of the
organisation concerned. A LOW security level
would indicate that the organisation enables
other users to see most of its models apart
from the private ones (i.e., only the
organisation model itself for that
organisation). A MEDIUM security level
would enable the organisation to provide
access restrictions to some model kinds that
could be considered sensitive. A HIGH
security level would indicate that no model
of that organisation is visible to any other
organisation within any instance of the
platform involved.

resourceFilters (resource filter def ...)* A containment reference to the resource
filters specified in this organisation model.

Credentials An abstract class that represents any kind of
credentials. For CAMEL, two concrete kinds
of credentials have been captured: (a)
platform credentials which enable a user to
authenticate against the platform concerned;
(b) cloud credentials which allow the
platform to perform actions over a specific
cloud on behalf of a certain user.

CloudCredentials name {

 inner def ...
}

A concrete subclass of Credentials which
represents credentials that can be used to
authenticate users over a certain cloud. Such

credentials can take the form of a login and
password or of public and private keys. These
credentials can be exploited by the platform
in order to handle the cloud-specific
deployments of user application components
in the cloud of the specific cloud provider
concerned.

name A String attribute that represents the name
of the credentials (as a unique identifier).

cloudProvider cloud provider:

cloudProviderRef
A reference to the cloud provider for which
the credentials hold.

securityGroup security group: 'string' A String attribute that represents the security
group in which the authentication of the user
can be performed

publicSSHKey public SSH key: 'string' A String representation of the public SSH key
of the user in the cloud of the provider
concerned.

privateSSHKey private SSH key: 'string' A String representation of the private SSH
key of the user in the cloud of the provider
concerned.

username username: 'string' A String representation of the username for
authenticating the user in the cloud of the
provider concerned.

password password: 'string' A String representation of the password for
authenticating the user in the cloud of the
provider concerned.

DataCenter data centre name {

 inner def ...
}

A concrete class that represents a data
centre of the cloud provider concerned. Such
a data centre has a specific name and code
and is situated in a specific location, which
can be physical or cloud-based. Please note
that the modelling of this class is essential in
order to capture some differentiation in the
pricing, offering and security levels across
different data centres in the same cloud
which can enable the more precise (re-
)configuration of an application that can be
supported by a certain platform.

name A String attribute representing the name of
the data centre.

codeName code name: 'string' A String attribute representing the code
name of this data centre.

location location: locationRef A reference to the Location of the data
centre.

Entity An abstract class that represents any entity
which can be either an organisation (and a
cloud provider being a subclass of
organisation) or a user.

Organisation organisation name { A concrete class of Entity which represents a

 inner def ...
}

certain organisation. Such an organisation is
characterised by various information fields
out of which the name and email are those
that can uniquely identify it.

name A String attribute that represents the name
of the organisation.

www www: 'string' A String attribute that represents the URL of
the official website of the organisation
concerned.

postalAddress postal address: 'string' A String attribute that represents the postal
address of the organisation (normally of the
eadquarters).

email email: 'string' A String attribute that represents an email
address of that organisation for contact
purposes (e.g., contact@<orgname>.com).

CloudProvider provider name {

 inner def ...
}

A concrete subclass of Organisation that
represents a cloud provider. Such kind of
organisation is characterised by additional
information which spans the type of the
cloud offered, the kinds of cloud services
supplied, the provider model and security
capabilities exhibited this organisation kind.

public (Public)? A boolean attribute that indicates whether
this provider offers a public or a private
cloud.

SaaS (SaaS)? A boolean attribute that indicates whether
this provider offers SaaS services.

PaaS (PaaS)? A boolean attribute that indicates whether
this provider offers PaaS services.

IaaS (IaaS)? A boolean attribute that indicates whether
this provider offers IaaS services.

providerModel provider model:

providerModelRef
A reference to the ProviderModel of this
cloud provider.

securityCapability security capability [

securityCapabilityRef (,

securityCapabilityRef)*]

A reference to the security capabilities
realised by this cloud provider (which apply
across one or more of its data centres).

User user name {

 inner def ...
}

A concrete subclass of Entity which
represents a user of the organisation at hand.
Such a user is characterised by some unique
information like its identification name in the
platform and its email as well as by
references to particular CAMEL elements that
have been either generated / modelled by
that user or represent additional
identification means for this user (e.g.,
credentials or external identifiers).

name A String attribute that represents a unique
identifier in the platform for the user at
hand.

email email: 'string' A String attribute that represents the email
of the user.

firstName first name: 'string' A String attribute that represents the first
name of the user.

lastName last name: 'string' A String attribute that represents the last
name of the user.

www www: 'string' A String attribute that represents the URL of
the personal web page of the user.

externalIdentifiers external identifiers [

externalIdentifierRef (,

externalIdentifierRef)*]

A containment reference to external
identifiers that can distinguish the user.

requirementModels requirement models [

requirementModelRef (,

requirementModelRef)*]

A reference to the RequirementModels that
have been specified by this user.

cloudCredentials cloud credentials [cloud

credentials def ... (,cloud

credentials def ...)*]

A containment reference to the cloud
credentials of the user which can be
exploited by the platform to perform
deployments of the user application
components in specific clouds.

deploymentModels deployment models [

deploymentModelRef (,

deploymentModelRef)*]

A reference to the DeploymentModels that
have been specified by the user.

paasageCredentials paasage credentials

paasage credentials def ...
A containment reference to the credentials
of the user with respect to the platform
exploited.

ExternalIdentifier external identifier

identifier {

 inner def ...
}

A concrete class that represents an external
identifier that can be used to distinguish a
certain user.

identifier A String attribute that represents the value of
the external identifier.

description description: 'string' A String attribute that further provides
additional information about the identifier.

Permission permission name {

 inner def ...
}

A concrete class which represents an access
control permission. Such a permission
enables a certain role to perform a specific
action over a certain resource or sets of
resources. The identification of resources is
achieved via a ResourceFilter. Resources can
be models or services offered by the
platform. A permission holds for a certain
validity period, denoted by a starting and
ending date, and then it should be revoked.

name A String attribute representing the name of
the permission.

role role: roleRef A reference to the Role, i.e., the subject of
the permission which is allowed to perform
the corresponding action to the resources

identified.

startTime start: date A date attribute that denotes the starting
time for the validity of the permission.

endTime end: date A date attribute that denotes the end time
for the validity of the permission which
signifies then that the permission should be
revoked.

resourceFilter resource filter:

resourceFilterRef
A reference to a resource filter which
identifies a set of resources on which the
permission holds.

action action: action def ... An attribute referring to the action allowed
to be performed on the identified resources
by this permission. Currently, only the READ
and WRITE members of the ActionType
enumeration are allowed to be provided as
values for this attribute mapping to the most
widely used action kinds specified in access
control permissions.

SecurityLevel LOW or MEDIUM or HIGH An enumeration that lists concrete security
levels that can apply for a particular
organisation. Each security level maps to a
certain access level over the models owned
by the organisation. For instance, a LOW
security level enables any external entity to
read all models of the organisation except
the organisation model one.

ResourcePattern EXACT or TREE An enumeration that lists certain resource
patterns. Such patterns include: EXACT (an
exact resource pattern usually denoting a
certain path in which the respective
resources are situated) and TREE (a tree-
based resource pattern which is associated to
a certain path - the semantics is that any
descendant sub-path from that path,
including the directory denoted by that path,
is selected such that all resources residing in
it apply for the corresponding permission).
For instance, when resource path is:
"/myOrg" and the pattern is EXACT, then all
resources under this path are selected. On
the other hand, for the same path, if the
pattern is TREE, then the resources on both
the path and its descendants (e.g.,
"/myOrg/applications") are selected.

ResourceFilter An abstract class that denotes a resource
filter, i.e., a selection filter for one or more
resources that can be exploited in the
specification of a certain permission.

name A String attribute that represents the name
of the resource filter.

resourcePattern pattern: ResourcePattern An attribute that takes values from the

ResourcePattern enumeration. Such a
resource pattern is the main driver for the
selection of the resources in the filter along
with the respective path or URL that is
provided in the concrete kinds of resource
filters.

InformationResource

Filter

 information resource

filter name {

 inner def ...
}

A concrete subclass of ResourceFilter which
denotes a filter for information resources.
Such a filter mainly includes the specification
of the resource path in the model repository
where the corresponding resources to be
selected reside. In case that the inherited
resource pattern is TREE, then not only the
path's resources are selected but also the
resources under all the descendants sub-
paths of this path.

informationResourcePath information resource

path: 'string'
A String attribute that represents a resource
path (e.g., "/organisations/myOrg") (in a
model repository).

everyInformationResource (all)? A convenience boolean attribute that, when
is equal to true, signifies that all information
resources are selected (in the model
repository). In that case, there is no point in
providing a value for the
informationResourcePath attribute.

ServiceResourceFilt

er

 service resource filter

name {

 inner def ...
}

A concrete subclass of ResourceFilter which
denotes a filter over service resources. Such a
filter mainly includes the specification of a
(service) URL for which a permission should
hold. Such a URL could map to either a
specific service method, to the service itself
or to all services available in the
corresponding server identified by that URL.
This depends on the URL provided and how
deep it goes in the service tree. In
conjunction also with the resource pattern
inherited, interesting combinations can be
modelled. For instance, suppose that we
need to provide a permission for all the
services hosted by a specific server. Further
suppose that the URL of the server is:
"http://www.myorg.com:8080". If then the
resource pattern is TREE, all the services
hosted by the server are selected (logically
speaking being deployed in the servlet
container mapping to this URL). As another
example, suppose that we need to select a
certain method called m1 of service s1. Then,
we would need to specify the exact URL of
the method: "
http://www.myorg.com:8080/s1/rest/m1" as
well as the EXACT resource pattern.

serviceURL service url: 'string' A String attribute that represents the URL of
the service(s) to be selected or its (their)
methods.

everyService (all)? A convenience boolean attribute that
denotes that all services should be selected
(for a certain platform). In that case, the
serviceURL does not need to be provided.

Role role name {

 inner def ...
}

A concrete class that represents a role, i.e., a
certain grouping of users that pertains to
certain sets of responsibilities and rights. By
assigning users to roles, then RBAC-based
access control policies can be specified as
actually being denoted by the Permission
class.

 name A String attribute that represents the name
of the role.

RoleAssignment role assignment name {

 inner def ...
}

A concrete class that represents the
assignment of a role to a certain user or user
group that pertains to a certain validity
period after which the assignment needs to
be revoked.

name A String attribute that represents the name
of the role assignment.

user user: userRef A reference to the user for which the
assignment holds.

role role: roleRef A reference to the role assigned to the user
or user group.

userGroup user group: userGroupRef A reference to the user group for which the
assignment holds.

startTime start: date An attribute of type date that denotes the
starting time of the assignment's validity
period.

endTime end: date An attribute of type date that denotes the
end time of the assignment's validity period.
This end time should not be less than the
starting time of the assignment, if both dates
are provided.

assignmentTime assigned on: date An attribute of type date that denotes the
exact time that the assignment was
submitted to the authentication and
authorisation system. Logically speaking, the
assignmentTime should be less or equal to
the startTime of the assignment, if both
dates are provided.

UserGroup user group name {

 inner def ...
}

A concrete class that represents a group of
users on which a certain role could be
assigned. As such, this actually represents a
convenient and compact way of assigning
certain common rules to a specific group of

users.

name A String attribute that represents the name
of the user group.

users users [userRef (,

userRef)*]

A reference to one or more users that belong
to this group.

PaaSageCredentials paasage credentials

password {

 inner def ...
}

A concrete subclass of Credentials that
represents platform-specific credentials
which could be exploited in order to uniquely
authenticate the user across all entry points
and services offered by the platform.

password A String attribute that represents the actual
password of the user platform credentials.
The logic part of such credentials is the actual
name of the user (see User class).

Location Meta-Model

LocationModel location model name {

 inner def ...
}

A concrete subclass of Model that represents
a location model. It constitutes a container
for all kinds of locations that can be specified
by this meta-model.

cloudLocations (cloud location def ...)* A containment reference to all cloud
locations specified in this model.

countries (country def ...)* A containment reference to all cloud
countries specified in this model.

regions (geographical region def

...)*

A containment reference to all regions
specified in this model.

Location An abstract class that denotes any kind of
location. Two specific kinds of locations can
be then specified, being subclasses of this
class: geographical regions (continents,
subcontinents & countries) and cloud
locations.

id A String attribute that represents the unique
identifier of this location. Such an identifier
could, for instance, be an ISO code for a
certain country (e.g., GE denoting the
country of Germany).

CloudLocation cloud location id {

 inner def ...
}

A concrete class of Location that represents a
cloud-specific location. Such a location can
also have cloud location descendants thus
enabling to specify an hierarchy of cloud
locations, like the one that can be defined,
e.g., for Amazon AWS. A cloud location
within a certain hierarchy can also be
associated with a certain physical location
represented by the GeographicalRegion
class. Once this is done, then automatically
all descendants of that location are also
associated with this physical location.

isAssignable (assignable)? A boolean attribute indicating whether such
a location can be assigned to a certain
resource.

subLocations sub-locations [cloud

location def ... (, cloud

location def ...)*]

A containment reference to the child cloud
locations of this location.

parent parent: cloudLocationRef A reference to the parent of this cloud
location, if it exists (i.e., it is not a root / top
one).

geographicalRegion geographical region:

geographicalRegionRef
A reference to the physical location
(GeographicalRegion) in which the cloud
location is situated.

GeographicalRegion geographical region id {

 inner def ...
}

A concrete subclass of Location that
represents a physical location in terms of a
geographical region, such as a continent or a
sub-continent.

name name: 'string' A String attribute that represents the name
of the physical location / geographical region.

parentRegions parent regions [

geographicalRegionRef (,

geographicalRegionRef)*]

A reference to the parent regions of this
region, if they exist (thus more prominent for
sub-continents which have as a parent whole
continents).

alternativeNames alternative names [

'string' (, 'string

')*]

A list of alternative names for this
geographical region. Such a list could, for
instance, include the name of this region in
different spoken languages.

Country country id {

 inner def ...
}

A concrete subclass of GeographicalRegion
that represents a certain country.

Type Meta-Model

TypeModel type model name {

 inner def ...
}

A concrete subclass of Model which
represents a type model, i.e., a container of
values and value types.

dataTypes (value type def ...)* A containment reference to all the value
types defined in this model.

values (value def ...)* A containment reference to all the values
defined in this model.

Limit limit {

 inner def ...
}

A concrete class that represents an upper or
lower bound for a Range. For such a bound
the actual value is specified along with an
indication if this value is to be included or not
in the corresponding range.

included (included)? A boolean attribute which indicates whether
the value of this limit should be included in
the range encompassing this limit.

value value def ... A containment reference to the numeric
value of this bound / limit.

TypeEnum IntType or StringType or
BooleanType or FLoatType or
DoubleType

An enumeration that lists all basic types for
single values (e.g., StringType and
IntegerType).

SingleValue An abstract class that represents a single
value. Various concrete kinds of single values
are also captured, such as EnumerateValues
and IntegerValues.

BoolValue boolean value boolean

value def ...

A concrete class of SingleValue that
represents a boolean value.

value An attribute of type boolean representing the
actual boolean value of this single value kind.

EnumerateValue name : value A concrete class of SingleValue that
represents an enumeration value / member
which comprises two main parts: (a) the
name of the member and (b) its actual
integer value.

name A String attribute that represents the name
of the enumeration member.

value An attribute of type integer representing the
value of this enumeration member.

NumericValue An abstract subclass of SingleValue that
represents all kinds of numeric values (e.g.,
IntegerValues)

IntegerValue

 int value integer value def

...

A concrete class of NumericValue that
represents an integer value.

 value An attribute of type integer representing the
actual integer value of this numeric value
kind.

FloatsValue

 float value float value def

...

A concrete class of NumericValue that
represents a float value.

 value An attribute of type float representing the
actual float value of this numeric value kind.

DoublePrecisionValu

e

 double value double

precision value def ...

A concrete class of NumericValue that
represents a double (precision) value.

 value An attribute of type double representing the
actual double precision value of this numeric
value kind.

NegativeInf negative infinity A concrete subclass of NumericValue which
represents the negative infinity and can be
exploited to specify the lower bounds of
ranges (i.e., semi- or open ranges).

PositiveInf positive infinity A concrete subclass of NumericValue which
represents the positive infinity and can be
exploited to specify the lower bounds of
ranges (i.e., semi- or open ranges).

ValueToIncrease value to increase numeric A concrete subclass of NumericValue which

value def ... represents a value that can be increased.

value A reference to the numeric value that can be
increased.

StringsValue string value string value

def ...

A concrete class of SingleValue that
represents a String value.

value An attribute of type String representing the
actual String value of this single value kind.

ValueType An abstract class that represents any kind of
value type. More concrete value types are
also captured which are made subclasses of
this class.

name A String attribute that represents the name
of the value type.

BooleanValueType boolean value type name {

 inner def ...
}

A concrete subclass of ValueType that
represents all booleans. Its primitive type is
by default mapped to BooleanType.

primitiveType primitive type: TypeEnum An attribute that denotes the (fixed)
primitive type of this value type.

Enumeration enumeration name {

 inner def ...
}

A concrete subclass of ValueType that
represents an enumeration that comprises a
list of enumeration values.

 values values [enumerate value

def ... (, enumerate value

def ...)*]

A containment reference to all
EnumerateValue members of this
enumeration.

List list name {

 inner def ...
}

A concrete subclass of ValueType that
represents a list. Such a list can uniformly
contain a list of values of the same type,
which can be either primitive or a certain
value type. By allowing the type of a value to
be a ValueType, then we enable a list to
contain values that conform to such a value
type, e.g., a certain (integer) range (rather
than taking values from the whole integer
set).

values values [single value def ...

(, single value def ...)*]

A containment reference to all (single) values
contained in this list.

primitiveType primitive type: TypeEnum An attribute taking values from the
TypeEnum enumeration, i.e., mapping to a
certain primitive type. It should not be used
in conjunction with the type property.

type type: valueTypeRef A reference to the ValueType of the values
contained in this list. It should not be used in
conjunction with the primitiveType attribute.

Range range name {

 inner def ...
}

A concrete subclass of ValueType that
represents a (numeric) range. Such a range
has an upper and lower bound which can be
open (mapping to positive and negative
infinity, respectively). Its contained values

also conform to a certain primitive type.

lowerLimit lowerLimit: limitRef A containment reference to the lower Limit
of this range.

upperLimit upperLimit: limitRef A containment reference to the uper Limit of
this range.

primitiveType primitive type: TypeEnum An attribute of type TypeEnum which
denotes the primitive type of the values
contained in this range.

RangeUnion range union name {

 inner def ...
}

A concrete subclass of ValueType that
represents a union of (numeric) ranges. Such
a union should not be continuous and thus
needs to include non-overlapping ranges (i.e.,
ranges that do not share any value) of the
same primitive type.

ranges ranges [range def ... (,

range def ...)*]

A containment reference to the list of ranges
over which the corresponding union is
constructed.

primitiveType primitive type: TypeEnum An attribute of type TypeEnum denoting the
primitive type of this range union and of all
the ranges that are included in it.

StringValueType string value type name {

 inner def ...
}

A concrete subclass of ValueType that
represents all strings. Its primitive type is by
default mapped to StringType.

primitiveType primitive type: TypeEnum An attribute that denotes the (fixed)
primitive type of this value type.

Unit Meta-Model

UnitModel unit model name {

 inner def ...
}

A concrete subclass of Model which
represents a model of units.

 units (unit def ...)* A containment reference to all units defined
in this model.

Unit An abstract class that represents any kind of
unit. Subclasses of this class are concrete unit
kinds, such as TimeIntervalUnits and
MonetaryUnits.

name A String attribute that represents the name
of the unit.

unit unit: UnitType An attribute taking values from the UnitType
enumeration which includes all concrete
units that can be exploited, such as SECONDS
and BYTES.

CoreUnit core unit {

 name : unit
}

A concrete subclass of Unit representing the
unit of cores. For such a unit, the unit
attribute can take only the value of CORES
(number of cores).

Dimensionless dimensionless {

 name : unit
}

A concrete subclass of Unit representing a
dimensionless unit. For such a unit, the unit
attribute can take only the value of RATIO

and PERCENTAGE.

MonetaryUnit monetary unit {

 name : unit
}

A concrete subclass of Unit representing a
monetary unit. For such a unit, the unit
attribute can take only the value of EUROS,
DOLLARS and POUNDS.

RequestUnit request unit {

 name : unit
}

A concrete subclass of Unit representing a
request unit. For such a unit, the unit
attribute can take only the value of
REQUESTS (i.e., number of requests).

StorageUnit storage unit {

 name : unit
}

A concrete subclass of Unit representing a
storage unit. For such a unit, the unit
attribute can take only the value of BYTES,
KILOBYTES, MEGABYTES and GIGABYTES.

ThroughputUnit throughput unit {

 name : unit
}

A concrete subclass of Unit representing a
unit of (network or processing) throughput.
For such a unit, the unit attribute can take
only the value of REQUESTS_PER_SECOND,
TRANSACTIONS_PER_SECOND and
BYTES_PER_SECOND.

TimeIntervalUnit time interval unit {

 name : unit
}

A concrete subclass of Unit representing a
time interval unit. For such a unit, the unit
attribute can take only the value of
MILLISECONDS, SECONDS, MINUTES, HOURS,
DAYS, WEEKS, and MONTHS.

TransactionUnit transaction unit {

 name : unit
}

A concrete subclass of Unit representing a
transaction unit. For such a unit, the unit
attribute can take only the value of
TRANSACTIONS.

UnitType BYTES or KILOBYTES or MEGABYTES
or GIGABYTES or EUROS or DOLLARS
or POUNDS or MILLISECONDS or
SECONDS or MINUTES or HOURS or
DAYS or WEEKS or MONTHS or
REQUESTS or
REQUESTS_PER_SECOND or
TRANSACTIONS or
TRANSACTIONS_PER_SECOND or
BYTES_PER_SECOND or
PERCENTAGE or CORES

An enumeration that list all possible concrete
units that can be modelled.

UnitDimensionType An enumeration that represents all types of
unit dimensions (e.g., STORAGE, COST).

Execution Meta-Model

ExecutionModel execution model name {

 inner def ...
}

A concrete subclass of Model that represents
an execution model. Such a model acts as a
container for all elements that can be
specified for modelling the execution history
of one or more user applications.

actionRealisations (action realisation def ...)* A containment reference to a list of all (scale)
action realisations specified in this model.

eventInstances (event instance def ...)* A containment reference to a list of all event
instances specified in this model.

executionContexts (execution context def ...)* A containment reference to a list of all
execution contexts specified in this model.

measurements (measurement def ...)* A containment reference to a list of all
measurements specified in this model.

sloAssessments (slo assessment def ...)* A containment reference to a list of all (scale)
SLO assessments specified in this model.

ruleTriggers (rule trigger def ...)* A containment reference to a list of all rule
triggers specified in this model.

ActionRealisation action realisation name {

 inner def ...
}

A concrete class that represents an instance
of a (usually scaling) action that has been
executed in the context of a scaling rule
triggering. For such an action, it is specified
its start and end time as well as the lower
level actions implementing it, as it can be
differentiated depending on the respective
cloud that it is executed.

name A String attribute representing the name of
the action realisation concerned.

action action: ActionType An attribute taking values from the
ActionType enumeration thus indicating the
exact action that has been executed.

startTime start time: date A date attribute that represents the start
time of the action execution.

endTime end time: date A date attribute that represents the end time
of the action execution.

lowLevelActions low level actions: 'string' A String attribute that denotes the low level
actions at the provider side that have been
performed in the context of executing this
action.

ExecutionContext execution context name {

 inner def ...
}

A concrete class which represents a certain
deployment episode for a specific
application. Such an episode starts when the
application starts being deployed and ends
when the application deployment is stopped.
This deployment episode is associated with a
certain (deployment) cost (which dynamically
should change while the application is
running). It is also connected with the
deployment model actually enforced as well
as the requirements that have led to the
concretisation of this deployment model. The
latter information can be exploited not only
for traceability reasons but also for enabling
correlating together different deployments of
the same or different applications in order to
support any kind of related analysis (e.g.,
best deployment discovery for a certain
application). The execution context is also

related to the actual measurements
produced for the deployed application at
hand which also facilitates such kinds of
analysis. Finally, the execution context is
associated with all the rules that have been
triggered in the context of the same
deployment episode.

name A String attribute that represents the name
of the execution context.

application application: applicationRef A reference to the application correlated to
this execution context.

startTime start time: date A date attribute that denotes the start time
of the execution context.

endTime end time: date A date attribute that denotes the end time of
the execution context.

totalCost total cost: double An attribute of type double that denotes the
total cost of the application provisioning
(deployment and execution) associated with
this execution context. While the application
deployment has not been ended, this cost is
the running cost. Otherwise, the cost is the
final cost of the application provisioning.

costUnit cost unit:

monetaryUnitRef
A reference to the monetary unit of the
application provisioning cost associated with
this deployment episode.

deploymentModel deployment model:

deploymentModelRef
A reference to the application deployment
model in effect for this deployment episode.

requirementGroup requirement group:

requirementGroupRef
A reference to the group of requirements
that led to the production of the application's
concrete deployment model executed under
this deployment episode.

Measurement A class that represents any kind of
measurement, such as measurements
associated with VMs, internal components,
whole applications and component
communications. Apart from classical
information, such as the value and
timestamp of the measurement, this class
also requires to specify additional
information, such as the execution context in
effect and the metric instance involved in the
production of this measurement.

name A String attribute representing the name of
the measurement.

executionContext execution context:

executionContextRef
A reference to the execution context under
which this measurement has been produced.

metricInstance metric instance:

metricInstanceRef
A reference to the metric instance that was
involved in the production of this
measurement.

value value: double The actual value of the measurement as a
double.

rawData raw data: 'string' A String attribute that refers to a pointer to
raw (measurement) data which were
exploited in the aggregation that resulted in
this measurement.

measurementTime measurement time: date The actual timestamp of the measurement as
an EDate.

slo slo:

serviceLevelObjectiveRef
A reference to the SLO that needs to be
evaluated against this measurement - this
mainly applies for measurements mapping to
metrics that are directly involved in the
conditions of these SLOs.

eventInstance event instance:

eventInstanceRef
A reference to the instance of the event that
has been generated due to the production of
this measurement (e.g., in the case of the
violation of a certain metric condition
mapping to the production of a
corresponding non-functional event
instance).

ApplicationMeasurem

ent

 application measurement

name {

 inner def ...
}

A concrete subclass of Measurement which
represents an application measurement.

application application: applicationRef A reference to the application that has been
measured.

InternalComponentMe

asurement

 internal component

measurement name {

 inner def ...
}

A concrete subclass of Measurement which
represents an internal component
measurement.

internalComponentInstance internal component

instance:

internalComponentInstanceR

ef

A reference to the actual instance of the
internal application component that has
been measured.

VMMeasurement vm measurement name {

 inner def ...
}

A concrete subclass of Measurement which
represents a VM measurement.

vmInstance vm instance:

vmInstanceRef
A reference to the actual instance of the VM
that has been measured.

CommunicationMeasur

ement

 resource coupling

measurement name {

 inner def ...
}

A concrete subclass of Measurement which
represents a communication / network
measurement. Differently from the other
concrete kinds of measurement, such a
measurement needs to be correlated with
two instances: an instance of the source and
target VM communicating.

sourceVMInstance source vm instance:

vmInstanceRef
A reference to the instance of the source VM
involved in the communication.

destinationVMInstance destination vm instance:

vmInstanceRef
A reference to the instance of the destination
/ target VM involved in the communication.

SloAssessment slo assessment name {

 inner def ...
}

A concrete class that represents a certain SLO
assessment that has been performed upon
the production of a relevant measurement
(i.e., mapping to a metric which directly
participates in the condition of this SLO).
Such an assessment is trivially associated to
the corresponding SLO. It is also connected
with the execution context in which it has
been performed. It is also related with the
measurement that led to its production.

name A String attribute that represents the name
of this assessment.

slo slo:

serviceLevelObjectiveRef
A reference to the SLO that has been
assessed.

assessment (violated)? The result of the assessment as a boolean
value that indicates whether the SLO has
been violated or not.

executionContext execution context:

executionContextRef
A reference to the execution context in which
the SLO assessment has been performed.

measurement measurement:

measurementRef
A reference to the measurement that led to
the production of this SLO assessment.

assessmentTime assessment time: date A date attribute that denotes the exact time
point when this SLO assessment has been
performed.

RuleTrigger rule trigger name {

 inner def ...
}

A concrete class that represents the actual
triggering of a scalability rule within a certain
execution context / deployment episode.

name A String attribute that represents the name
of the rule trigger.

scalabilityRule rule: scalabilityRuleRef A reference to the scalability rule being
triggered.

eventInstances event instances [

eventInstanceRef (,

eventInstanceRef)*]

A reference to the event instances that led to
the triggering of the scalability rule
concerned.

actionRealisations action realisations [

actionRealisationRef (,

actionRealisationRef)*]

A reference to the actual actions that have
been executed upon the rule triggering.

triggeringTime triggering time: date A date attribute that represents the exact
time point where the scalability rule has been
triggered.

executionContext execution context:

executionContextRef
A reference to the execution context under
which the rule triggering has occurred.

Here comes now the explanation of the notation used in this document for referring

to the CAMEL textual syntax for all the CAMEL elements analysed.

Table 2. Explanation of the textual syntax notation used in this document

Notation Explanation

class name {

 inner def ...
}

The outer definition of a CAMEL class is provided here.

"class" maps to the class name in the CAMEL meta-model

while name refers to the name that is provided by the

user when creating an instance of this class. "inner

def ..." means that there is an inner definition of

that class (instance) which relies on inserting one or

more lines that map to the values that the attributes

and properties involved in that class take.

class name typed class2Ref
{

 inner def ...
}

Similar as in the previous case with the sole exception

that we also define here the type of the instance-based

class specified here. This type maps to referring to a

second class (see class2Ref).

element def ... A containment reference to one element. The definition

of that element is provided inline in the definition of

the containing element.

(element def ...)* A containment reference to zero or more elements. The

definition of that elements is provided inline in the

definition of the containing element.

(element def ...)? A containment reference to at most one element. The

definition of that element is provided inline in the

definition of the containing element.

propertyName [elementRef

(, elementRef)*]

This represents the values that a certain property

named as "propertyName" takes for the current class

instance definition. Such values refer to one or more

references to a certain element. For better

comprehension, let us provide a simple example: event

instances [eventInstanceRef (, eventInstanceRef)*]. This
represents the values that the "eventInstances"

property of the "RuleTrigger" class takes. Such values

map to referring to one or more instances of events. A

reference to an instance of a certain class named as

"element" is represented by "elementRef" in Verdana.

The notation (,elementRef)* means that zero or more

",elementRef" values can be provided. For instance, if

two need to be supplied for the current example, then

the representation of the respective property would

take the following form: event instances

[eventInstanceRef1, eventInstanceRef2]. [] always

denotes a list. Please also note that references in

CAMEL textual syntax take the form of

globalContainerName.(localContainerName.)*.elementName.

For instance, if we need to refer to a certain metric

named as ResponseTime and this metric belongs to metric

model MM1 of CAMEL model CM, then the reference to that

metric will taken the form of: CM.MM1.ResponseTime.

propertyName [element def

... (, element def ...)*]

This is a similar case to the previous one. The sole

difference is that now we deal with a containment

reference. As such, the definition of each element

referenced, denoted by " element def ...", should be
inline inside the list definition.

propertyName: elementRef Simpler case that the two previous ones. Instead of

referring to multiple, only one element is referred by

the current property at hand.

propertyName: element def

...

Similar case to the previous one with the sole

exception that we refer to an inline definition of the

element referenced as we are dealing here with a

containment reference.

(propertyName:

elementRef)?
Same case as in "propertyName: elementRef" where now we
denote that the property might be defined but may also

be not. Symbol ? means 0 to 1 occurrence for the

content inside the parenthesis.

(propertyName: element def

...)?

Similar case to the previous one with the sole

exception that we refer to an inline definition of the

element referenced as we are dealing here with a

containment reference.

attribute: basicType Here we denote that the attribute "attribute" will take

a value of basicType (e.g., int, double, or string).

For example, an attribute of "description" would take a

value of 'string'. As non-alphanumeric characters might

be provided, it is better to always enclose the actual

string provided with quotes (').

attribute: ValueEnum Here we denote that the attribute "attribute" will take

a value from the ValueEnum enumeration.

(attribute: basicType)? Same as in the case of "attribute: basicType" where we
just additionally indicate that this row might or might

not be provided.

(attribute: ValueEnum)? Same as in the case of "attribute: ValueEnum" where we

just additionally indicate that this row might or might

not be provided.

attribute [type(,type)*] Here we have the case where we provide multiple values

of the "attribute" attribute where "type" can be a

basic type or an enumeration. Such multiple values are

represented via the [], list symbol, which include a

comma separated values conforming to the "type".

attribute: basicType ..

basicType

Here we specify a range of values (from lower to

higher) for the "attribute" attribute which are of a

basicType. For instance, the number of cores required

for a VM could be expressed as: "core: 1 .. 3" (i.e.,

the number of cores should be between 1 and 3.

attribute: basicType ..

(basicType)?

Same as in previous case where we also maintain the

possibility that the upper value in the range might not

be provided.

(name)? Here we denote that the true value of a boolean

attribute, named as "isName", might be provided.

Absence of the corresponding value/row means that the

attribute takes the false value.

X or Y or Z or ... Here we just list all possible values for a certain

enumeration. Please be aware here of the "or" operator

which just indicates that one of the values from the

enumeration is always mapped to a certain class

property.

name1 : name2 This is a case where we define in a single row the

values of 2 attributes (named as name1 and name2 in

this example). As already indicated, such values can be

either of a basic type or map to a certain member of an

enumeration.

Please note that in some cases, we provide the definition of the whole class,

including its contained attributes and properties. This is more convenient in case

that it is not possible to put each (required) attribute or property in a single

row as multiple attributes might be mentioned even in the same row.

